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Abstract—The matrix multiplication is a fundamental building
block in many machine learning models. As the input matrices
may be too large to be multiplied on a single server, it is
common to split input matrices into multiple submatrices and
execute the multiplications on different servers. However, in a
distributed infrastructure it is common to observe stragglers
whose performance is lower than other servers at some time. In
order to mitigate the adversarial effects of potential stragglers,
various coding schemes for the distributed matrix multiplication
have been recently proposed. While most existing works have
only considered the simplest case where only two matrices are
multiplied, we investigate a more general case in this paper where
multiple matrices are multiplied, and propose a coding scheme
that the result can be directly decoded in one round, instead
of in multiple rounds of computation. Compared to completing
the matrix chain multiplication in multiple rounds, our coding
scheme can achieve significant savings of completion time by up
to 90.3%.

Index Terms—matrix chain multiplication, entangled polyno-
mial code, distributed computing, linear regression

I. INTRODUCTION

The matrix multiplication is a fundamental operation for
solving various learning-based problems. With the ever grow-
ing sizes of learning models and datasets, the sizes of the
matrix multiplication in the models are also increasing. It has
become challenging to execute the matrix multiplication on
a single server when input matrices are from large datasets.
Therefore, it is common to split the job of matrix multipli-
cation to multiple tasks which can be executed on different
servers in parallel.

However, it is well known that servers in a distributed
infrastructure, e.g., in a cloud, can exhibit faulty behaviors [1]
due to load imbalance, resource contention, or hardware issues,
etc. For example, it has been observed that virtual machines
on Amazon EC2 may be 5x slower than others of the same
type [2], [3]. Moreover, up to more than 100 server failures
can happen on a daily basis in a cluster of Facebook with 3000
servers [4], [5]. Therefore, if some tasks are running on such
servers, i.e., stragglers, they will become the bottleneck of the
job. Even one single straggler can significantly slow down the
overall progress of the whole job, as the completion of the
whole job depends on the completion of all of its tasks.

A naive method that mitigates the adversarial effects of
stragglers is to replicate each task on multiple servers, so that
the job can be completed as long as one of them runs on a non-
straggling server. However, it incurs an excessive amount of
resource consumption. To tolerate any r stragglers, all tasks

need to be replicated on r + 1 servers. On the other hand,
coding-based methods have been proposed where the result
of the job can be decoded from a certain number of coded
tasks [2], [3], [6], [7]. As illustrated in Fig. la, in order to
calculate AX, we first split A into two submatrices Ag and
A;p so that AX = ﬁ? X = i(1)§
coded task can be created as (Ao + A1)X, such that any two
of the three tasks can recover the result of AX. Compared to
replication which needs two additional tasks to tolerate one
single straggler, we save the number of workers by 25% in
Fig. 1b. Hence, the coded matrix multiplication enjoys a higher
level of straggler tolerance with much fewer additional tasks.

]. Then one additional
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Fig. 1. Examples of the coded matrix multiplication.

In order to reduce the size of the task, existing works for
the coded matrix multiplication have been evolved from one-
dimensional coding [3], [6], [8], [9] where only one matrix
is split as shown in Fig. 1b, to two-dimensional coding [10],
[11], [12], [13], [14] where both two matrices can be split, one
vertically and the other horizontally, as illustrated in Fig. lc.
Comparing the tasks in Fig. 1b and those in Fig. 1c, we can see
that the size of the tasks in Fig. 1¢ is further reduced by 50%.
On the other hand, we need to have five tasks to tolerate one
straggler in Fig. 1c, as the overall result needs to be decoded
from any four tasks.

More generally, the two input matrices can be split both
horizontally and vertically into pg X p; and p; X p2 submatrices.
Fig. 1c, for example, corresponds to a special case of py =
p2 = 2 and p; = 1. A coded task will then multiply two



coded matrices that are linear combinations of submatrices in
the two input matrices. Therefore, we can see that the input
matrices can be divided into more and more submatrices of
smaller sizes, and then each task can be computed with less
time. To the best of our knowledge, the overall result of the
matrix multiplication can only be decoded with the results of
at least pop1p2 + p1 — 1 tasks [7], [15].

However, existing works on the coded matrix multiplication
have been focusing on the multiplication of only two matrices,
while in practice there are various learning-based algorithms
requiring the result of the matrix chain multiplication, i.e.,
multiplying multiple matrices together. For example, the ma-
trix chain multiplication is required in the randomized singular
value decomposition [16], which is a core in the principal
component analysis and are applied widely in various machine
learning models [17], [18].

With existing coding techniques above, the matrix chain
multiplication can only be completed by multiple rounds of
matrix multiplications. At least one input matrix in each round
must be based on the result of the previous round. Although the
sequence of multiplication can be determined using dynamic
programming to minimize the overall computational complex-
ity [19], the result of each round still needs to be decoded and
encoded again for the next round, making the job completion
time increase linearly with the number of rounds.

In this paper, we propose a general coding framework for the
matrix chain multiplication where the job can be finished with
just one round of tasks. Assume that there are m matrices M;,
1=0,...,m—1, and we aim to calculate their multiplication
HZ’;Bl M;. Although Dutta et al. [15] have also discussed
coding for the matrix chain multiplication, the input matrices
must be partitioned with specific patterns. Our coding scheme,
instead, supports to split the matrix in a more general way,
where M; can be split into any p; partitions vertically and
pi+1 partitions horizontally, and hence M; will be divided into
DpiPi+1 submatrices, i.e.,

0, -1
M M)Pit

M; =

pi—1,0 pi—1,pit1—1
MZ- Mi

Each task will then be a chain multiplication of m coded
matrices encoded from the submatrices in My, ..., My,_1.!
We prove that with our coding scheme, the overall result of
H?:()l M; can be decoded with the results of any H?:)l i+
[T~ pi — 1 tasks. In particular, we will see that the coding
scheme proposed in [7] can be considered as a special case of
m = 2.

We implement and evaluate our coding scheme using
OpenMPI running on Microsoft Azure and find that the job
completion time of the matrix chain multiplication can be
improved by up to 90.3%, compared to multiplying them one

I'Since a coded task still calculates the matrix chain multiplication, dynamic
programming can also be applied on each task to minimize its complexity,
regardless of the coding scheme. Therefore, we focus on the coding scheme
only in this paper, instead of the order of multiplication in each task.

by one in multiple rounds. We further run linear regression
implemented based on the coded matrix chain multiplication,
and demonstrate that it can save completion time by up to
51.7%, compared to the same job with entangled polynomial
codes.

II. RELATED WORK

Stragglers are a common issue in distributed systems which
can be incurred by various reasons such as network congestion,
source contention, load imbalance, and hardware failures [1],
[20], [21]. Conventionally, such stragglers can be mitigated
by periodically writing checkpoints of intermediate results
into a reliable storage device [22], [23]. When a straggler is
detected [24], [25], the affected tasks can be relaunched on a
replacement server with previous results loaded from a recent
checkpoint. However, it incurs a significant amount of time and
network traffic to write checkpoints. As the network bandwidth
is already a source of bottleneck in a distributed infrastructure,
writing checkpoints periodically may further increase the job
completion time.

On the other hand, we can add redundant tasks in the job
in advance to tolerate potential stragglers. The naive way of
adding redundant tasks is replicating each task on multiple
servers [14], [24], [26], [27], [28], [29]. Compared with
replication, adding coded tasks have been shown to tolerate
the same number of stragglers with fewer tasks. Given a
coding scheme, we define its recovery threshold as the smallest
number of arbitrary tasks that can be decoded to obtain the
overall result. The recovery threshold should be as low as
possible to tolerate the same number of stragglers with fewer
tasks.

Lee et al. [3], for the first time, proposed a coding scheme
for matrix-vector multiplication, where only the matrix is
split vertically and encoded. Such one-dimensional coding
has also been constructed with sparse coding [6] or rateless
coding [30]. However, when there are two large matrices to
multiply, the coded tasks may still be too large to run on a
single server.

Two-dimensional coding can split both the two input matri-
ces and encode them into coded tasks. There are two kinds of
designs for two-dimensional coding. One is based on product
code where a task encoded by a one-dimensional code can
be further divided and encoded into more coded tasks [10],
[12], [13], [31]. However, such coding schemes require that
the group of tasks encoded from the same one-dimensional
coding task must be decodable, i.e., the number of non-
straggling servers must reach the recovery threshold of the
one-dimensional code, making its recovery threshold far from
the optimum, as all stragglers may fall into the same group. On
the other hand, polynomial codes are the only two-dimensional
coding that achieves the optimal recovery threshold [14].

Two-dimensional coding can only divide each input matrix
in one dimension only, either vertically or horizontally. Three-
dimensional coding, including PolyDot codes [15] and entan-
gled polynomial codes [7], can divide the two input matrices
both vertically and horizontally. When the two input matrices
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Fig. 2. Entangled exponents of X in fo(X)f1(X).

are split into pg X p; and p; X p2 submatrices, PolyDot codes
can only support a special case of py = p; while entangled
polynomial codes can support any feasible values of pg, p1,
and po.

In this paper, we consider a more general operation, i.e.,
the distributed matrix chain multiplication, Although Dutta et
al. have extended the code construction into the matrix chain
multiplication [15], their code can only be constructed when
the partitions of input matrices follow specific patterns, i.e., the
odd matrices and even matrices among the m input matrices
must be partitioned in the same way, respectively. The code
constructed in this paper, however, can support any arbitrary
and valid partitions in all m input matrices. The recovery
threshold in [15] can also be seen as a special case of our
general recovery threshold.

III. BACKGROUND: ENTANGLED POLYNOMIAL CODE
(m=2)

Before demonstrating our coding scheme for the matrix
chain multiplication, we first give a brief review of entangled
polynomial codes [7], a special case of our coding scheme
with m = 2. We will construct our code for the matrix chain
multiplication based on entangled polynomial codes. In this
case, the multiplication of My and M; can be written as

MoM; =
p1—1 p1—1
0,1 3 1,0 0,21 3 rT1,p2—1
> Myt M > Myt M
x1=0 x1=0
)
Pt po—1,z x1,0 Pt po—1,z x1,p2—1
o—1L,z1 1, o— 1,21 1,P2—
> Mj My > Mg My
x1=0 x1=0

where we can see that there are pgp. submatrices. With an
entangled polynomial code, coded tasks are constructed to
obtain such pgps submatrices. Each server runs a task that
calculates fo(X) f1(X), where the value of X is different from
that in any other tasks. In particular,

po—1lpi—1

§ § M‘/L’O#L’lepzonrm

o= 03?1—

and
p2—1p1—1

E § M{)I_l_wlaw2Xp1.’L‘2+:t1

ZL’QZO 513110

Hi(X) =

Therefore, we have

min{p;—1,s1}

>

z1=max{0,s1—p1+1}

po—1p2—12p;—2

=2 22

zo=022=0 s1=0

fo(X

Mgo7$1M{)1—1—81+$1,$2> Xpl(p2z0+x2)+51. (1)

From (1), we can see that fo(X)f1(X) is a polynomial
function of X of degree popip2 + p1 — 2. Therefore, we
can decode the coefficients of fo(X)f1(X) with pop1ps +
p1 — 1 such tasks, by a polynomial interpolation algorithm or
Gaussian elimination, In particular, in (1), the coefficients of
xP1(p2zota2)+s1 with s1 = p1—1 are 221 :0 Mgo,-’m thmz-
Therefore, we can obtain the pgps desired submatrices in
MyM, after decoding.

It is interesting to note that when s; # p; — 1, the
corresponding coefficients are noise coefficients, i.e., they are
not needed after decoding. As shown in Fig. 2, we cover the
exponents of the terms in fo(X)f;(X) with some specific
values of xy and x;. We can see that such exponents range
between pipapo + p1x2 and pipexg + pixs + 2p1 — 2. In
particular, the term with the exponent pypsxg+p122+p1 — 1,
which corresponds to s; = p; — 1, has its coefficient as a
desired submatrix Zg;é My M2,

In fo(X)f1(X), the exponents of noise coefficients will not
interfere with the other desired coefficients with s; = p; — 1,
although the values of s; can range between 0 and 2p; — 2. If
we compare the terms of (zg, x2) with those of (xg,z2 — 1),
we can see that the exponents of (xg,z2 — 1) are all smaller
than the exponent that corresponds to the desired submatrix, if
x2 > 0. On the other hand, the exponents of (z¢,zs + 1) are
all larger than that of the desired submatrix if zo < pa — 1.
Hence, no other terms in fo(X)f1(X) will have the same
exponent as pip2xo + p1T2 + p1 — 1. We can also get the
same result if xo = 0 or x2 = py — 1, i.e., when (xg,ps — 1)
goes to (zg + 1,0). Therefore, all desired submatrices with
all possible values of (x,z2) will also have their exponents,
making sure that their values can be correctly obtained after
decoding.

Moreover, the exponents of noise coefficients can overlap so
that the degree of the polynomial can be reduced. In Fig. 2, we
can see that except the exponent corresponding to s; = p; —1,
all the other exponents around can be matched with the same
exponent above with (xg, z2—1) or lower with (xg, z2+1). As
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Fig. 3. Entangled exponents of X in fo(

their corresponding coefficients are noise, they can be added
together without affecting the overall result after decoding.
Therefore, compared to making all terms with different values
of (zp,z2) have different exponents, entangled polynomial
codes save the overall degree of fo(X) f1(X) which also helps
to achieve a low recovery threshold. In this paper, we will
further utilize this property in order to achieve a low recovery
threshold in the coded matrix chain multiplication.

IV. CODED CHAIN MULTIPLICATION OF THREE MATRICES
(m=3)

We now start to construct our coding scheme for the
matrix chain multiplication. For simplicity, we first present the
construction for a special case of multiplying three matrices,
i.e., m = 3. We will present the code construction for a general
value of m in Sec. V.

We show that the code for the multiplication of three
matrices can be extended from the entangled polynomial
code. Considering the case of MyM;Ms, a coded task will
then be constructed as fo(X)f1(X)f2(X). Here, fo(X) and
f1(X) remain the same as constructed with the corresponding
entangled polynomial code constructed for MyM;, and we
will now present how to construct fo(X).

Similar to the case of m = 2 in Sec. III, there will be pops
submatrices in MOMlMQ. In particular, if we define My =
MyM7, we can divide Ms into pgpo submatrices and have

MoM; My = MyMsy =

p2! “r0,x 2,0 P2l “r0,x x2,p3—1
>T2 2, 2 2,P3—
> My M, > My M,
xo=0 xo=0
. . )
Pl “rpo—1,x z2,0 P21 “rpo—1,x x2,p3—1
o—L1,x2 2, o—L1,x2 2,P3—
> M, M, s >0 M) M,
1220 22:0

where M;O’“ =
0<wy<ps—1.

p1—1 MOIOawlle17$2, 0< 9 <py—1and

x1:0

X) f1(X) f2(X).

We will now discuss how to construct f>(X) to obtain
such pops submatrices. Considering (1), we can rewrite

fo(X) f1(X) as:

fo(X) f1(X) 2)
po—1p2—12p1—2

= Z Z Z 02($0’372731>Xp1(p2$0+1’2)+sl 3

x0=0x2=0 s1=0

2p1—2 /po—1p2—1
- Z (Z Z CV2($07152’51))(;01(172w()""372)"1‘31>7 (4)

81:0 I(]:() Ig:()

A min{p;—1,s1} T0,T1
where Cs(x9, 2, 81) = Za’:1=max{0,81—p1+l}M0

. From Sec. III, we know that we are inter-
ested in the value OfAOQ(l'(), X9, 81) if s1 = p; — 1. Therefore,
the submatrices in My have been encoded in fo(X)f1(X) as

MP1—1—81 +x1,72
1

po—1p2—1

fQ(X) — Z Z 02(1‘071827;01 _ 1)XP1(102$0+’£2)+P1—1
x0=0x2=0
po—1p2—1

— Z Z M;mwzxm(mxo—&-szpl—l.

x0=0x2=0

Now  we reapply entangled polynomial  codes
to Ms;Ms, and encode M, as fo(X) =
p3—1 g p2—1 Mp2_1_9327$3XP0P11)21'3+F11’2 We will
x3=0 x2=0 2 :
then get

min{pz—1,s2}

>

zo=max{0,50—pa+1}

po—1p3—12py—2

RPXO)RX) =03 >

o =0 xrs3 =0 S2 =0

szbo,m M§72*1*S2+r2’r3) X P1(pop2z3+pazotsz)+(p1—1)

Similarly, we are interested in the coefficients where
so = po — 1. Therefore, the desired coefficients in



fo(X) f1(X) f2(X) are those with s; = p;—1 and s3 = po—1:
po—1p3—12pay—22p;—2
fo(X) f1(X =Y >N N

zo=023=0 s2=0 s1=0
min{pz—1,s2}
- p2—1l—sa+w2,23
Ca(wo, z2,51) M3
zo=max{0,s2—p2+1}
XP](POP2I3+I)21'0+52)+81. (5)

We show the entangled exponents of fo(X)f1(X)f2(X) in
Fig. 3. Given a fixed (xq,x3), we can see that the exponents
of the corresponding terms are entangled in the same way
as entangled polynomial codes. In this case, however, the
exponents are also further entangled with the exponents with
(zo, 23+ 1). Similar to entangled polynomial codes, although
p1S2+s1 can vary from 0 to 2p; p —2, and the exponents of X
in (5) will increase by p1ps when (z3, zo) goes to (z3,z9+1),
we can still see that the desired coefficients in the middle will
not interfere with noise coefficients around, which overlap with
other noise coefficients. As shown in Fig. 3, given x( and z3,
the only desired coefficient has s; = p; — 1 and sg = ps — 1,
while all other noise coefficients can overlap with each other
with different values of s;. When we change x3 to x3 + 1,
the exponents of coefficients with sy # ps — 1 will further
be entangled with those of previous coefficients of (zg,x3),
while the desired coefficient still enjoys its unique exponent.

Given the entangled exponents above, we can see that the
degree of fo(X)f1(X)f3(X) is pop1paps + p1p2 — 2, as the
exponents of X range from 0 to pop1p2(ps — 1) + p1p2(po —
1) +p1(2p2 —2)+(2p1 —2) = pop1p2p3 +p2p2 —2. Therefore,
the recovery threshold is pop1p2ps + p1p2 — 1, and the desired
submatrices can be found in pgp3 of its coefficients with s; =
p1 — 1 and sg = po — 1.

V. GENERAL CODED MATRIX CHAIN MULTIPLICATION
A. Code construction

We now generalize the code construction for the matrix
chain multiplication with any m matrices, m > 2. We define
an encoding function €,,, that generates fo(X), ..., fm-1(X),
ie., (fo(X), ey fm—l(X)) = Qm(MQ, ceey Mm—1)~

Following the method in Sec. IV, the general encoding
function 2, can be constructed recursively in Alg. 1. We
define Pf = H?:a pi- In particular, if ¢ > b, we define
P =1.

Note that such fo(X),..., fin—1(X) can be constructed
before encoding and then the encoding process will be
directly evaluating the value of such m polynomials with
a unique value of X. Given (fo(X),...,fm-1(X)) =
Q (Mo, ..., M,,_1), we will obtain a coded task F,,(X) =
H?:()l fi(X). Moreover, the coefficients in F,,(X) can also
be decoded by interpolation or Gaussian elimination, as in the
entangled polynomial code.

We will now analyze the properties of such a coding scheme
as follows, including its recovery threshold and correctness.

Algorithm 1 Construction of £2,,(Mp, ...,
1: if m = 2 then

Mmfl)

2 fo(X) = STy Y My X et
3 A(X) = SRyl gl ypeate
o= 1=

4: return (fo(X), f1(X))

5: else if m is odd then

6: (fO(X)a"'vf’m—Q(i()):Qm 1(M07"'1 Mm 2)
m m—1—" m—1"1—Tm—-1,Tm

7: f‘m—l(X) = 1;,,”:0 I;m 1= OMp

8: XPg”flwm-i-leﬁwmq

9: return (fo(X),..., fm-1(X))

10: else if m is even then

11: (fl(X),,fm 1( )):Qm 1(M1,... Mm 172 .

B ) = SRS

13: return (fo(X),...

afm 1( ))

B. Recovery Threshold

We first analyze the recovery threshold of the general coding
scheme. From Alg. 1, we can see that F,,,(X) is a polynomial
function of X, and thus we can write F,,,(X) as

po—1pm—12p;—2 2pm—1—2
20=02m,=0 s1=0 Sm—1=0

Ry (0,%m ,S150-ySm—
Cm(x07$m7817~~~78m71)X m( 0yTm ,S81s+++3Sm 1),

and
and

where Cn (o, Tyny 81,5 - - -
Ry (20, Tm, 81, --,8m—1) denote
exponent of each term, respectively.

As F,,(X) is still a polynomial function of X, we can
obtain the recovery threshold from the degree of F,,(X), i.e.,
by investigating the value of R,,(Zo, Zm,S1,. -+, Sm—1)-

sy Sm—1 )
the coefficient

Lemma 1. When m is odd,

m—1 m—1
R77L(x03zm5317'"aSTYL—l) :PO xm+P1 ZTo+

wf3
Wl

(P s+ P s1y) . (6)
=0

When m is even,

m m—1 m—1
ySm—1) = PMxo+ P xm+ Py sy

Ry (20, T, 51,
m_g
m—2—1 m—2—
+ (P sm—11 + P
1=0

Lsagt) . (D)

Proof. We prove this lemma with induction. The cases of m =
2 and m = 3 have been proved in Sec. III and Sec. IV.

When m > 3 and m — 1 is odd, m will be an even integer.
From Line 11 of Alg. 1, we know that the exponent of X in
each term in []7," fi(X) will be

P xm+P2m Yo+

m
2

Nlw

2—1 2—1
(Pgnjrl Sm—1-1 + PS?H 52+l) 3
=0



Also, we have

po—1pi—1

MP? —1—I17woxP1"":co+P;”71x1
E E 1 .

CE():O :El:O

fo(X) =

Therefore, when we multiply fo(X) with T[75" f:(X),
R (xo, Tm, 81y -+ -, Sm—1) Will be
R (20, Tm, S15- -+ Sm—1) = P"zo+ Py* 's1 + P,

m—1
2

+ (P o1+ PY  sad) . (9)
=0

_3
2

which is equivalent as (7).
When m — 1 is even and m is odd, the exponent in each
term of H;'IOQ M; can be obtained from R,,_1, ie.,

PFI_1$0+P{n_2£Cm_1 +P2m_281+

m—1
g2

Y (P s+ P sa) . (10)
=0

From Line 7 in Alg. 1, we know the exponent of each term
in fr(X) is Pg"ilxm + Pf"*Qmm,l, and thus the exponent
of each term after the multiplication will become

Pom_lmm + P{”_Qsm_l + le_lxo + P2m_2$1+

—3—1 —3—1
(P sm—amt + P37 s241)
=0
=P ey + PP gt

o3
|
wjw

(P2 simo1o + P 1) (11)
1=0
O
Lemma 2. Exponents in F,,(X) are consecutive.
Proof. If m = 2, we can see that the range of all ex-

ponents in f;(X) is consecutive. Meanwhile, given a fixed
xo in fo(X), the exponents in 21;11;(1) My XPrparotan
are also consecutive. Hence, with a fixed x(, all values of
Ro(x9,x2, 1) are consecutive. From (7), we can also see that
Ro(x0+1,0,0) = Ra(xg,p2 — 1,p1 — 1) + 1. In other words,
exponents with zo and xy + 1 are overlapped. Therefore, the
exponents Ry (2, 22, s1) with all values of z( are consecutive.

If all exponents in F,,_1(X) are consecutive, we now prove
that all exponents in F,,(X) are also consecutive. If m is
odd, from Line 7 in Alg. 1 we can get that if x,, is fixed,
all corresponding exponents in F,,,(X) will be consecutive.
We can also see that R, (0,2, + 1,0,...,0) = Ry, (po —
L, &m,p1 — 1,...,pm—1 — 1) + 1. Similarly, if m is even,
we can get that if x( is fixed, all corresponding exponents
in F,,,(X) will be consecutive from Line 12 in Alg. 1. We
can also get that R,,(zo,pm — L,p1 — 1,...,Dm—1 — 1) =
R (zo + 1,0,...,0) + 1. By such overlappings, we know
that the exponents in F,,(X) are consecutive. O

With Lemma 1 showing the exponents of all terms in
F,(X) and Lemma 2 showing that exponents in F,(X)
are consecutive, we will now be able to obtain the recovery
threshold by counting the number of all possible terms in this
polynomial function.

Theorem 1. In F,,(X), 0 < R,,(zo,Tm, 51, -
PP+ P2,

© sm—l) S

Proof. 1t is easy to see that the minimal exponent in F,, (X)
is 0, when zg = s; = ... = S;,—1 = Z,. We then only need
to obtain the degree, i.e., the maximal exponent in F,(X).

Since z; < p;,— 1,7+ =0,...,m, and s; < 2p; — 2,1 =
1,...,m — 1, the maximal exponent is

Py pm — 1) + P{"(po — 1)+

m 3
272

(P{ZI_TQ_l(Qan—l—l - 2) + PﬁIQ_l(2p1+l - 2))
=0

=P — Pt > (2Pt —epy
=0

=P — Pt 2Pt -2
=P+ Pt -2,

o3
wjw

Similarly, when m is even, the maximum exponent is

P (po = 1)+ P{"~Hpm — 1) + P (21 - 2)
z-2

+ Z (P2 2pm—1—1 — 2) + P27 (2p2 — 2))
=0

-2

= P+ Pt 2R Y (2R 2Rt )
=0

o3

=P+ P -2
O

Given the range of exponents in F,,(X) above, we can get
that there are at most PJ” + P{" ! — 1 terms in F,,,(X). As
shown in Lemma 2 that all possible exponents between 0 and
P 4 P! — 1 exist in the terms of F,,(X), the recovery
threshold is Py 4+ P"~* — 1.

C. Correctness

We now demonstrate the correctness of our coding scheme.
In other words, all submatrices in the overall result can be
obtained after decoding.

Theorem 2. For any m > 2, the pop., submatrices in
H?;Ol M; can be found in C,, (2o, T, S1,-- -, Sm—1) When
Si:pi—l, i:l,...,m—l.

Proof. We also prove this theorem with induction. The cases
of m = 2 and m = 3 have been proved in Sec. III and Sec. IV,
respectively. We now prove that if this theorem is true with
m — 1 matrices, it is also true with m matrices.

If m is odd, we have F,,(X) = Fn-1(X)fm-1(X).
From this equation, we know that the submatrices



in H?lgzMi can be found when s; = p; — 1,
Z’ p—

- 1,...,m — 2. In other words, we define
Fm—l(X) = 23:1 2:::11:1 C’m—l(xO; Tm—1,P1 —
L,...,pm—2 — 1)XTm—1_which is composed of the pop,,_1

m—

submatrices in HiZOQ M;. In particular, the values of zg
and x,,—1 in the coefficients determine the position of the
corresponding submatrices. Therefore, the submatrices in
[1;%," M; will also be generated from coefficients in

mel(X)fmfl(X)

po—1Ppm—12Ppm—_1—2 min{py,—1—1,8m—1}

=2 2 2 2.

20=02m=0 8$m-1=0 z,,_1=max{0,8;ym_1—Pm—1+1}

Cm-1(20, Tm-1,p1 — 1,...,Pm—2 — 1)
Mpm—lflfsm—ﬁffﬂm—l,rm,XRm—1+Pg77L71$m+an'721m,—1
m .

In the equation above, if we fix s,,—1 = p;,—1 — 1, we have
coefficients

Pm—1—1
Tm—1,Lm
g Crn—1(x0, Tm—1,p1 — 1,... . Pm—g — L) M=
Tm—1=0

= Cm (20, Tm,p1 = 1,...,pm = 1). (12)

From (12), we obtain all pgp,,, submatrices in H;n:gl M;, with
0<zg<po—1land 0 <2z, <pm—1.
On the other hand, when m is even, we have F,,(X) =

fo(X) (H:’;_ll fi(X)). The pip,_1 submatrices in
HZ’;l M;; can then be found in Cy, 1 (%1, Ty 82, - 5 Sm—1)>
where s; =p; —1,7=1,...,m — 1. Hence, the submatrices

. m—1 . .
in [TX, M, can be generated from coefficients in

p1—1
Z Mgmml m—l(xhxm;pQ =1 Pmo1 = 1)
1120
= Cn(x0, Ty p1 — 1, o, P — 1),
O]

Moreover, from the proof of Lemma 1, we can show that
the exponents of desired coefficients do not overlap with those
of noise coefficients in Theorem 3, which completes the proof
of the correctness of our coding scheme with Theorem 2.

Theorem 3. The exponents of the pop., desired coefficients
are unique in F,,(X).

Proof. As shown in Fig. 2 and Fig. 3, two coefficients
may have the same exponent with different parameters in
Ry (20, Tm, S1, - - -, Sm—1). We prove this theorem by proving
that changing any parameter in R,,(Zo,Zm, S1,---,Sm—1)
will not lead to an overlap with an exponent of a desired
coefficient.

When m = 2, we can see from (1) that the exponent of
(zo, 2 + 1,51) equals that with (zq,z2,s1 + p1) if 25 <
p2 — 1. When x5 = ps — 1, the exponent with (zg,p2 — 1, 51)
also equals that with (zg + 1,0,s1 + p1). If 57 = p1 — 1,
$1-+p1 > 2p; — 2 is invalid. In addition, s; + p; is impossible

to equal p; —1. Therefore, the exponent of a desired coefficient
will not overlap with that of any other coefficient.

Similarly, we can also see from (5) that the exponent with
(3,041, 82, 81) equals that with (x5, 20, S2 +p2, $1) (When
2o < po — 1), and the exponent with (z3, zg, s2+1, s1) equals
that with (z3, 2o, $2, 81 +p1) (When so < 2py — 2). Still, none
of the overlapped exponents above can belong to a desired
coefficient. The overlapped exponent can also be found for
the case of g = pg — 1 or sy = 2py — 2. In the rest of this
proof, we will only consider the cases where x; < p; — 1 or
s; < 2p; — 2, the proof for the case where x; = p; — 1 or
S; = 2py — 2 can be obtained similarly.

In order to prove the case of a general m, we first reorder
the parameters in R,,(zo, Zm, S1,-.-,Sm—1) by the degrees
of their coefficients. In (6), the parameters can be ordered
as (Ty, Loy Sm—1, 51, - - .,Sm,T-H,S'mT—l). Similarly, the param-
eters can be ordered as (zq, Ty, S1, Sm—1, - - .,3%_1,5%) in
(7). Consider an adjacent pair of parameters b;, which is either
x; or s; (i # m when m is odd, and i # 0 when m is
even), and s;. Examples of such pairs include zq and s,,_1
when m is odd, and sy and s,,—; when m is even. Given
any such adjacent pair, this theorem can be proved if we can
prove that the exponent with (..., b;,s;,...,) equals that with
(...,bi,8;+pj,...). This theorem is already proved for m = 2
orm=3.

We finally prove this theorem with m > 3 using induction.
If m — 1 is odd, comparing (8) and (9), we can see that
the coefficients (21, 8m—1,82,...) in (8) are inherited as
(81, 8m—1,82,...) in (9). Hence, if this theorem is true with
m — 1, then it is true with m when b; is in (s1, Sy—1, 82, .- .)-
So now we only need to consider the case of b; = x,,,, and then
b; = s1. We can see that the exponent of (g, Zm +1,51,...)
equals that of (xg, Zy,, $1 + D1, - . -).

When m — 1 is even, we can also see that the weights
of (xym—1,51,Sm—2,52,...) in (10) are inherited by those
of (Sm—1,51,8m—2,82,...) in (11). Hence, we can also
prove that the exponents between (,,,zo + 1,8m—1,-..)
and (., %o, Sm—1 + Pm—1,...) are the same, finishing the
proof. O

VI. EVALUATION

In this section, we present our empirical results of running
the coded matrix multiplication in a cluster of virtual machines
hosted on Microsoft Azure. All coded tasks run on virtual
machines of type B1. The job is controlled by another virtual
machine of type B4 as a master, which also decodes the
results of tasks as decoding requires more memory than each
task. We first evaluate the performance of the matrix chain
multiplication, and then solve a linear regression problem with
the matrix chain multiplication.

A. Matrix Chain Multiplication

We implement our coding scheme (chain) for the matrix
chain multiplication with OpenMPI. The m coded matrices
in Q,(My,..., M,_1) are initially stored on each worker.
Each worker multiplies such m coded matrices and uploads



the result to the master. The master keeps polling if there is
any new result sent from a worker, terminates all remaining
tasks once the number of received results reaches the recovery
threshold, and then decodes the results. In our experiments, we
decode the results with Gaussian elimination. Note that we
only need to obtain the pop,, desired coefficients in F,,(X),
and thus the decoding will be stopped once we get such desired
coefficients in order to save time.

As a comparison, we implement another scheme EP (parti-
tion) which completes coded chain multiplication in multiple
rounds, each of which is encoded with an entangled poly-
nomial code. To make a fair comparison, we also first store
each m matrices encoded with entangled polynomial codes
on each worker. In the first round, each worker multiplies
the two coded matrices in Qo(Mp, M;), and the master will
obtain P, = MyM;. Then the master will only encode P; as
in Qy(Py, M), as M has already been encoded, and sends
coded matrices to each worker. In this round, P, = P; My will
be calculated and the master will also encode P, and so on
until all m input matrices have been multiplied at the end of
the (m — 1)-th round.

We run jobs with the two schemes above, which multiply
m random matrices of the same size with m = 3, 4, and
5, respectively. In these jobs, the sizes of the m matrices
are 2000 x 2000 and 4000 x 4000. Each matrix is split both
vertically and horizontally into 2 partitions, i.e., pg = --- =
Pm = 2. Therefore, the recovery thresholds for the jobs in
chain are 19 (m = 3), 39 (m = 4), and 79 (m = 5).
The number of workers is then chosen as the sum of the
corresponding recovery threshold and 5 additional workers,
such that at most 5 stragglers can always be tolerated. When
running the job with entangled polynomial codes in multiple
rounds, the number of workers in each round will be chosen
such that the same number of stragglers can be tolerated.

Although EP (partition) maintains the same partitions as
chain, the entangled polynomial code has a much lower
recovery threshold and thus require much fewer workers if
the same number of stragglers need to be tolerated. Hence,
we run the same jobs with one more scheme EP (worker),
which is also based on the entangled polynomial code, by
increasing the number of partitions of input matrices in each
round so that the same number of workers will be required
as chain. The numbers of partitions in the two input matrices
in each round will be 2 x 4 and 4 x 2 (m = 3), 3 x 4 and
4x3(m=4),and 3 x 8 and 8 x 3 (m = 5). If the rows or
columns of a matrix cannot be equally divisible by the number
of partitions, we will add additional zero rows or columns at
the end of the matrix.

In Fig. 4, we present the job completion time of coded
chain multiplication in the two jobs with the three schemes
above, i.e., chain, EP (partition), and EP (worker). We run
each job 60 times, and show the average of its job completion
time in Fig. 4. We can see that our coding scheme can
significantly save the overall job completion time by at most
90.3%. Compared to EP (partition), although more tasks are
allowed with our coding scheme, making the parallelism of
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Fig. 4. Comparison of the job completion time of the matrix chain multipli-
cations.

the job increase, the most saving of time comes from the
communication overhead, as with entangled polynomial codes
the intermediate results should be uploaded to the master and
then be encoded for the next round. Moreover, although EP
(worker) enjoys the same level of parallelism as chain, its
high communication overhead (as illustrated in Fig. 5) actually
becomes its bottleneck, and we can see that its job completion
time is the worst.
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Fig. 5. Comparison of the communication overhead of the matrix chain
multiplications.

We also compare the communication overhead in Fig. 5.
We measure the total numbers of elements in the matrices
transferred over the network in the jobs running with the three



schemes. We can see that compared to EP (partition), the
communication overhead is more significantly saved by chain
when the value of m is smaller. In fact, our calculation shows
that when m = 6 the communication overhead of chain will
be higher than EP. However, such traffic will be sent in parallel
in one round only, while the traffic in EP (partition) need to
be sent sequentially in multiple rounds.

Moreover, we note that EP (partition) maintains the same
partitions as chain and thus requires much fewer workers than
chain. As for EP (worker), it maintains the same number of
workers by increasing the number of partitions, and we can
observe in Fig. 5 that the overall traffic is significantly higher
than the other two schemes.

From our experiments and analysis, we can see that if m is
very large, the network overhead of the coded matrix chain
multiplication can also be large, as the recovery threshold
increases exponentially. In such cases, we may limit the
number of partitions in some small input matrix, or split
the whole matrix chain multiplication into multiple chain
multiplication with fewer input matrices. However, in this
paper we focus on the general mechanism for the coded matrix
chain multiplication, and the optimal choices of partitioning
is out of the scope of this paper. Therefore, we leave such
discussions in our future work.

B. Linear Regression

We now use the coded matrix chain multiplication to solve a
linear regression problem in a distributed manner. The problem
is modeled as min, f(z) £ min, |[Az — y|?, where y € R?
is the label vector, A € R?*" is the matrix of the dataset, and
x € R" is the unknown weight vector to be trained. We solve
the linear regression problem with gradient descent. Initially,
the weight vector is set as 2(?). We then update it iteratively
as (D) = 2 4V f(2®)) = 2() —y AT (Az®) —y), t > 0.
We can then observe that each step can be completed by two
matrix multiplications, i.e., g} £ Az®), and AT (g — ).
Hence, we first build a distributed straggler-free solver for the
linear regression problem. To tolerate potential stragglers, we
use entangled polynomial codes to encode A and z(*) in the
first matrix multiplication, and A” and ¢ — y in the second
matrix multiplication, and then proceed to the next step. As A
and AT do not change in each step, we can place their coded
matrices on each worker before the job starts, and hence only
z® and g™ — y need to be encoded and sent to all workers.

The algorithm above was also used by Lee et al. [3] and
Yang et al. [32], requiring two rounds of matrix multiplications
in each step. However, we observe that 21D can be written as
2D = () 5 AT Az 44 ATy, Since A and y are constant,
we only need to compute ATy once. In each step, we then
only need to compute a matrix chain multiplication A7 Az(®),
Hence, we implement another distributed solver based on the
coded matrix chain multiplication with m = 3. We can see that
compared to existing solvers based on the distributed matrix
multiplication, the number of matrix multiplications in each
step is saved from two to one. Still, A and AT are encoded
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Fig. 6. Comparison of the job completion time of the linear regression.

and placed on each worker before the job starts, and only z(*)
need to be encoded and sent to all worker per step.
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Fig. 7. Comparison of the communication overhead of the linear regression.

In our experiment, we run the same jobs using the two
solvers above, i.e., EP and chain. We use coded matrix
chain multiplication in chain. In chain, A and A7 are both
partitioned into 2 X 2 submatrices. As z(® is a vector, we
just split it into 2 partitions horizontally. The same as in



Sec. VI-A, we split the matrices in two ways in EP. EP
(partition) partitions the input matrices in the same way as in
chain, and EP (worker) increases the input matrices so that
the recovery threshold equals that in chain, i.e., A and AT are
partitioned into 4 x 2 submatrices and z(*) is still split into
2 partitions. We repeat each job 20 times, and obtain their
average time of completion. We also choose the number of
steps in each job to be 100, 500, and 1000, respectively. The
sizes of the dataset matrix A are randomly generated in three
different sizes, 1000 x 1000, 2000 x 2000, and 4000 x 4000,
as well as the label vector y with the corresponding sizes.

Fig. 6 illustrates the completion time of the jobs running
with the three schemes above. Comparing to EP (partition),
chain is faster by up to 51.7%. EP (worker) is also a bit
faster than EP (partition), by up to 27.29%, due to its higher
parallelism. Although EP (worker) enjoys the same recovery
threshold as chain, chain is still faster since each step only
requires one chain multiplication, leading to a higher level of
parallelism since the two matrix multiplications in each step
in EP (worker) can only be done sequentially.

Besides the job completion time, we also compare the
corresponding communication overhead of the three schemes
in Fig. 7. The same as in Fig. 5, we measure the total
numbers of elements in the matrices/vectors transferred over
the network in the jobs running with the three schemes. We
can see that the traffic sent over the network in chain is
actually very similar to that in EP (partition), only 3.85%
percent lower, mainly because they partition the input data the
same way. Hence, it is the saving of matrix multiplications
that lead to the saving of job completion time. It is also
interesting to observe that EP (worker) incurs 1.88 time
more communication overhead than EP (partition). In other
words, the saving of complexity of the tasks of EP (worker)
compensates for the additional time of communication. On the
other hand, as the sizes of coded matrices/vectors are the same
between EP (worker) and chain, we can infer that the higher
communication overhead, as well as the two multiplications in
each step, make EP (worker) up to 71.0% slower than chain.

VII. CONCLUSION

Coded computing for the distributed matrix multiplica-
tion have been demonstrated to efficiently tolerate stragglers.
However, existing coding schemes proposed so far have
only considered the multiplication of two matrices, while
in practice learning-based algorithms commonly require the
multiplication of multiple large matrices. As the existing coded
matrix multiplication can only multiply two matrices each
time, with which the chain matrix multiplication needs to be
completed in multiple rounds, we propose a coding scheme
for the matrix chain multiplication with a general number of
matrices multiplied, which allows to complete the chain mul-
tiplication in one single round. Our experiments on Microsoft
Azure demonstrate that it significantly saves the time of the
distributed matrix chain multiplication and distributed linear
regression, compared to multiplying two matrices each time.
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