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Abstract—With the increasing sizes of models and datasets,
it has become a common practice to split machine learning
jobs as multiple tasks. However, stragglers are inevitable when
running a job on multiple servers. Compared to replicating each
task on multiple servers, running coded tasks can tolerate the
same number of stragglers with much fewer servers. However,
additional results of tasks running on stragglers are typically
disregarded in existing schemes of coded computing, incurring a
waste of the resources on such servers.

In this paper, we leverage the results of partially finished
tasks. In existing designs that utilize partially finished tasks, they
have only considered servers with homogeneous performance.
However, in a typical distributed infrastructure, e.g., a cloud,
servers with heterogeneous configurations are common. There-
fore, we propose Spinner which can efficiently utilize the results
of partially finished tasks even on heterogeneous servers. Spinner
works with existing coding schemes for matrix multiplication, a
fundamental operation in various machine learning algorithms,
and can efficiently assign the workload based on the performance
of the corresponding server. Furthermore, Spinner can equiva-
lently adapt the coding scheme for heterogeneous servers, aligned
with the expected workload assigned to each server, and thus
save the complexity of decoding. Combining the two strategies
together, we demonstrate in our experiments that Spinner can
improve the time of matrix multiplication by up to 84.0% and
thus improve the time of linear regression by 40.7%.

I. INTRODUCTION

Modern distributed computing systems have made it pos-

sible to train machine learning models on a large dataset. In

such systems, a machine learning job can be split into multiple

tasks that are executed on a large number of servers called

workers. However, it is inevitable that the progress of some

workers, i.e., a straggler, may lag significantly behind others

in a distributed infrastructure, such as a cloud. It has been

observed that virtual machines on Amazon EC2 may be 5×
slower than others of the same type [1], [2]. Therefore, the

performance of distributed machine learning algorithms may

not necessarily be improved by simply splitting a job into more

tasks, as with more workers the overall progress is more likely

to be delayed by stragglers.
One of the methods to mitigate the adversarial effects of

stragglers is to launch redundant tasks on additional work-

ers [3]–[9]. Fig. 1 illustrates examples of the matrix multi-

plication, a pervasive operation in machine learning models.
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We calculate AX on four workers in Fig. 1a. The matrix A

is split into two submatrices, A1 and A2, and the tasks of

A1X and A2X are replicated on two workers, respectively.

Therefore, any single straggler among the total four workers

can be tolerated without affecting the overall performance.

Fig. 1: Examples of distributed matrix multiplication with

additional workers (running replicated or coded tasks) to

tolerate one single straggler, represented with a gray dotted

arrow.

However, replicating tasks on multiple workers significantly

increases the resource consumption of distributed machine

learning jobs. To tolerate any r stragglers, each task has to

be replicated on r + 1 workers. On the other hand, coded

tasks, whose results can be decoded with results of other tasks,

can tolerate stragglers with significantly fewer additional tasks

than replication. In Fig. 1b, a third work executes a coded

task (A1 + A2)X , which can be decoded to recover A1X

or A2X if any other worker becomes a straggler. Therefore,

compared to replicating the two tasks in Fig. 1a, coded matrix

multiplication in Fig. 1b can save the number of additional

workers by 50% and tolerate the same number of stragglers.
In most existing designs of coded computing, however, the

results of tasks running on a straggler are typically disregarded

at the end of the job. In other words, a straggler is simply

considered as a failed server, although performance degrada-

tion is more common on a straggler [10]. For example, in

Fig. 1b, if Worker 2 and 3 have finished, the result of the

task running on worker 1 will be disregarded even if it is just

slightly slower than the other two servers. Moreover, even if

all the three workers are not stragglers, only the results of

two workers may be utilized and the other will be disregarded

like a straggler since it is redundant to the other results. If

there are only a small number of stragglers or the stragglers

are slightly slower, a significant amount of resources will be

wasted, which could have been utilized to achieve a lower job

completion time.



In order to leverage the resources on stragglers, it has

been proposed that the worker can upload the result of a

partially completed task instead of the whole task [1], [8],

[9], [11]–[14]. However, such designs either require specific

coding schemes with higher encoding and decoding overhead

or need to know the stragglers in advance. Moreover, most

of existing works on coded computing, including those that

do not leverage stragglers, assume that all workers are ho-

mogeneous [1], [2], [15]–[25]. However, servers are more

likely to be heterogeneous in distributed systems [26]. Hence,

servers with lower hardware configurations will almost always

be regarded as stragglers anyway, and their resources will

almost always be wasted as well. Even worse, in order to

decode the results of coded tasks, additional computation

will be inevitable. For example, in Fig. 1b, additional matrix

multiplication needs to be performed to get AX if Worker 1
is a straggler. If the size of AX is large, a significant delay

will be incurred during decoding.

Fig. 2: Motivating examples of coded distributed matrix multi-

plication with one coded task on an additional worker (Worker

3).

In this paper, we propose Spinner, a coding framework for

matrix multiplication that efficiently exploits the resources on

stragglers among a cluster of heterogeneous servers. Instead

of deploying a new coding scheme, Spinner can directly work

with existing coding schemes without incurring any additional

complexity. In Fig. 2, we show toy examples of multiplying a

matrix A with a vector X . In Fig. 2a, the matrix is originally

divided into two submatrices that are multiplied with the vector

on two workers, and a third worker multiplies a coded matrix,

which is the sum of the two submatrices, with the vector. Here

we assume that the base performance of Worker 3, i.e., the

performance when it is not a straggler, is twice of Worker 1
and 2, respectively. For simplicity, we assume that the matrix

on each worker has two rows. Conventionally, we need to

have the results from any two workers to complete this job.

As Worker 3 is faster than the other two workers, the result

on Worker 1 or Worker 2 will be disregarded with a high

probability, leading to a waste of resources even if it is not a

straggler.

In order to fully utilize the heterogeneous performances of

workers, workers in Spinner may execute their multiplications

on different rows in Spinner, as highlighted in Fig. 2b where

we can see that the workload on Worker 3 is twice of those

on Worker 1 and 2. Since each row in the coded matrix on

Worker 3 is a sum of the corresponding rows in the other

two matrices, the multiplication results corresponding to the

two missing rows on Worker 1 and Worker 2 can be decoded

from the results on Worker 3. In this way, all workers can

make contributions to the overall result of the job, and the

job completion time in Fig. 2b can be 50% lower than that in

Fig. 2a. When some worker becomes a straggler (relative to its

base performance), Spinner will also dynamically adjust the

workload in each task, still taking advantage of the resources

of all workers even including the straggler.

Furthermore, unlike the conventional coding scheme for

coded matrix multiplication where coded matrices are sepa-

rated from uncoded ones (Fig. 2a and Fig. 2b), the coding

scheme in Spinner can also be equivalently converted from

an existing coding scheme, by taking the dynamic workload

assignment into account, in order to make data in the orig-

inal matrix be proportionally placed into all coded matrices

according to the base performance of corresponding workers.

We therefore, minimize the complexity of decoding the results

from coded tasks and still tolerate the same number of

stragglers as the original coding scheme. As shown in Fig. 2c,

the matrices on the three workers all contain rows from the

original matrix, whose numbers are also proportional to their

performances. The rows multiplied on three workers in Fig. 2c

are then all from the original matrix, avoiding the need for

decoding. Moreover, the coding scheme in Fig. 2c is linearly

equivalent to the coding scheme in Fig. 2a and Fig. 2b, and

thus we can also recover the overall result from the other two

workers if any one worker becomes a straggler.

We implement Spinner for distributed matrix multiplication

with OpenMPI [27], and integrate it into a distributed linear

regression job. Our experiments demonstrate that compared to

existing coding schemes, Spinner can save the time of matrix

multiplication by up to 84.0% and thus save the time of linear

regression by up to 40.7%.

II. RELATED WORK

Stragglers are inevitable in distributed systems, due to

various reasons [28], [29] including network latency, resource

contention, workload imbalance, failures of hardware or soft-

ware, etc. Straggler detection and tolerance is an important

topic in distributed computing. A straggler can significantly

delay the progress of a distributed computing job waiting for

all tasks running in parallel to finish. Stragglers can be detected

when the job is running (e.g., in Hadoop [4], [30]), and the

affected tasks running on the stragglers will be relaunched.

However, the relaunched tasks will probably still be completed

later than other tasks, as they start later than others.

In order to fully mitigate the adversarial effects of strag-

glers, a state-of-the-art approach is adding redundant tasks in

advance to tolerate tasks affected by potential stragglers. In

this way, a task affected by a straggler can be disregarded



since the result of the same task can be obtained from other

servers [3]–[7], [25].

However, replication incurs a significant resource consump-

tion, in terms of both computation and storage, as all tasks

need to be replicated. Therefore, coded tasks have been

proposed to be added as redundant tasks rather than replicated

tasks. A coded task takes coded data as its input and the result

of the job can be decoded from a subset of all tasks so that

the most straggling tasks can be disregarded. Such coded com-

puting has been supported in some representative distributed

machine learning algorithms, such as linear regression [2],

gradient descent [2], [20], [24], and neural networks [21], [31],

[32]. Similar paradigms have also been applied in distributed

data analytics systems [15], [16], [33], [34].

In this paper, we consider the problem in coded computing

that a significant amount of system resources may be wasted if

the results of redundant tasks are simply disregarded. In order

to leverage the resources on stragglers, a simple idea is to

divide each task into multiple subtasks and encode the coded

tasks at the subtask level [11], [14]. Besides matrix multipli-

cation, this idea has also been applied in gradient descent [1],

[9], [12]. However, such designs all rely on specific coding

schemes which have much higher complexities than existing

coding schemes for coded computing. Spinner, on the other

hand, can work with most existing coding schemes, as well as

the coding scheme we propose for Spinner which minimizes

the decoding complexity. Although in this paper we will only

discuss the case of MDS codes, it can be easily extended to

support more coding schemes for coded computing, such as

polynomial codes [25], [35], [36] and LDPC codes [37].

Narra et al. [8] and Yang et al. [13] have also proposed

to assign workload to all non-straggling servers in order to

leverage their resources. Although their methods can leverage

more resources of servers if the number of stragglers is small,

they cannot utilize the resources of stragglers, especially when

the straggler is not a failed server. Even worse, they need to

know the stragglers in advance. In Spinner the workload in

each task is dynamically determined during the job so that

there is no need to identify stragglers in advance.

Moreover, the works above have all focused only on homo-

geneous servers. If servers with lower hardware configurations

are considered the same as other workers, they will be almost

always considered as stragglers. Hence, we need specific

designs to efficiently leverage the resources on heterogeneous

servers. Reisizadeh et al. [20] and Sun et al. [38] have con-

sidered the scenario where servers are heterogeneous. How-

ever, the workloads on heterogeneous servers are statically

assigned and they cannot leverage the stragglers among such

heterogeneous servers. To the best of our knowledge, Spinner,

for the first time, efficiently leverages the resources of all

heterogeneous servers.

III. SYSTEM MODEL

In this paper, we assume that we have a job to calculate AX

where A and X are both matrices. The job will be executed

on n workers that execute tasks AiX , i = 1, . . . , n. For

example, if there are no redundant tasks, Ai will be one of

the submatrices of A.

In order to support coded tasks, we consider (n, k) MDS

(Maximum Distance Separable) codes in this paper. Given

k matrices A1, . . . , Ak divided from A,1 an (n, k) code

computes r = n − k parity matrices, such that Ak+j =
∑k

l=1 gk+j,lAl, j = 1, . . . , r, where the coefficient gk+j,l

comes from a generator matrix G, i.e.,

G =











Ik

gk+1,1 · · · gk+1,k

...
. . .

...

gk+r,1 · · · gk+r,k











.

In G, the top k rows, i.e., Ik, are a k× k identity matrix, i.e.,

the first k tasks are actually uncoded. For simplicity, we use

gi to denote the i-th row in G, i = 1, . . . , n. An (n, k) code is

MDS if any k rows in G are linearly independent. Therefore,

we can decode the results of coded tasks as follows,2 as long

as we have results from k tasks where 1 ≤ i1 < . . . < ik ≤ n:







A1X
...

AkX






=







gi1
...

gik







−1

·







Ai1X
...

AikX






. (1)

Note that in this paper we only consider the case that A

is encoded with MDS codes [2]. Although code constructions

have been proposed where in each coded task both A and X

are encoded [25], [35], [39], the methods in Spinner can also

be applied to such codes in general.

In this paper, we assume that the job in Spinner runs in a

master-worker architecture. The master receives results from

workers until the received results are sufficient for decoding. If

a worker completes a task slower than its normal performance,

we consider it as a straggler. In other words, the criteria of a

straggler is based on its own hardware/software configurations.

A worker will not necessarily be regarded as a straggler if it

is slower than another worker, but will be if it is slower than

its normal performance.

The master receives the results of the n tasks. Convention-

ally the results of any k tasks are expected for decoding. In

practice, however, the results of more than k results will be

received as the straggler may be caused by the network. Hence,

the communication with all n workers should not be canceled

until the results from k workers have been received by the

master. In other words, results of much more than k workers

may have been received (even all workers when there is no

straggler) at the end of the job, which will be disregarded

eventually. However, Spinner can further support receiving

partial results of tasks in order to prevent collecting such un-

necessary results, while still tolerating at most n−k stragglers.

1If the size of X is larger than A, we can equivalently consider XTAT

where XT will be encoded.
2The equation works when Ai contains one row, otherwise each element

gi,j in G should be replaced with gi,jIm where m is the number of rows
in Ai. We assume in this paper that Ai contains one row without loss of
generality.



Spinner can also convert the coding scheme accordingly so as

to minimize the time of decoding.

IV. WORKLOAD ASSIGNMENT IN SPINNER

In this section, we will present the workload assignment

in Spinner, which leverages stragglers by utilizing partially

completed tasks. Different from existing works [8], [13],

Spinner allows determining the workload dynamically, aware

of both heterogeneity and stragglers. We will first present

a simple case with homogeneous workers and extend the

discussion to heterogeneous workers.

A. Homogeneous Workers

In order to exploit partial results of tasks, in Spinner

we further partition each of A1, . . . , Ak into n submatrices,

denoted as Ai,1, . . . , Ai,n, i = 1, . . . , k. The value of n can

be arbitrarily chosen as long as the number of rows in Ai

is divisible by n.3 Equivalently, each coded matrix Ak+j can

also be written as n submatrices Ak+j,1, . . . , Ak+j,n, where

Ak+j,m =
∑k

l=1 gk+j,lAl,m, m = 1, . . . , n, is encoded from

k submatrices in the same row as shown in Fig. 3. Note

that here we do not change the coding scheme at all, as

a coded matrix Ak+j , 1 ≤ j ≤ n − k, remains the same

if we combine Ak+j,1, . . . , Ak+j,n back together. Therefore,

we can still recover all k matrices A1, . . . , Ak as long as

we have any k matrices among A1, . . . , An, and tolerate the

same number of stragglers as (n, k) MDS codes described in

Sec. III. Similarly, each task AiX can also be written as a

series of subtasks including Ai,mX , m = 1, . . . , n, and the

job can still be completed as long as we have k tasks among

AiX, i = 1, . . . , n, completed.

Fig. 3: An example of partitioning of A1, . . . , A4 where n = 4
and k = 3. Horizontal arrows show that coded submatrices

A4,i are encoded from other submatrices in the same row. Ver-

tical arrows indicate the sequence of corresponding subtasks

on a worker, where only the starting subtasks are highlighted.

However, in Spinner we do not let the master wait for

the whole results from k workers since now each task con-

tains n subtasks. Although conventionally each worker should

complete all subtasks to finish its task, in Spinner we first

ask each worker to start from different subtasks. Specifically,

worker i will start from the subtask Ai,(((i−1)k) mod n)+1X .

3Zero rows can be padded in A if the number of rows is not divisible by
n.

For example, when k = n−1, (((i−1)k) mod n)+1 = ((1−
i) mod n)+1. Hence, Worker 1 will start from A1,1X , Worker

2 from A2,nX , Worker 3 from A3,n−1X , . . ., and Worker n

from An,2X , as illustrated in Fig. 3. After finishing executing

the first subtask of each worker, it will send the partial result of

this subtask to the master, continue to execute the next subtask

below or the first subtask if reaching the end, and eventually

execute all subtasks if it is not stopped by the master. Note that

the size of the result in each subtask is also 1
n

of the whole

task. Therefore, even though multiple messages are uploaded

to the master, the overall communication overhead will not

be increased. The master will keep receiving partial results

from all workers until it realizes that they are sufficient to be

decoded to get the result of AX . Now the overall result of

AX can be recovered if all rows in Fig. 3 have at least k

corresponding subtasks completed. If so, the master can stop

all the incomplete tasks, and start decoding received results of

their subtasks. The decoding algorithm is similar to (1), but

will decode results of subtasks row by row.

In this way, we can maximize the parallelism to all workers.

However, each worker will only go forward to its next subtask

if needed. If there is no straggler, each worker is expected

to complete k of its n subtasks and no more subtasks will

be executed as they are redundant and will be disregarded

anyway. Workers will continue only if there exists one or

multiple stragglers so that their resources will not be wasted.

In this way, no more communication is needed between

workers and the master, except for uploading the result and

terminating unfinished tasks. In Sec. IV-B, we will show that

this mechanism can further be extended for heterogeneous

workers and dynamically assign workload without additional

communication overhead.

B. Heterogeneous Workers

We now assume that the performance of workers are het-

erogeneous. We define Wi as the base performance of Worker

i,4 e.g., the number of tasks finished per unit of time, and then

define wi by normalizing Wi, i.e., wi =
Wi

∑

i
Wi

.

To extend the workload assignment above for heterogeneous

workers, the major difference is that we consider the expected

performance of each worker, by expecting a worker with a

higher performance to naturally execute more subtasks. There-

fore, we change the way of determining the starting subtasks

of workers. We also allow the number of subtasks in all tasks,

denoted by N , to be specified by the user. Hence, Worker i will

start from Ai,jX , where j = (
∑i−1

l=1 wlkN) mod N +1. Note

that N should be large enough such that for any i = 1, . . . , n,

wikN is an integer. In practice, we can round wikN to the

nearest integer and we do not consider this case for simplicity.

In particular, wikN is the expected number of subtasks

executed by Worker i. In a special case where all workers are

homogeneous, we will have wi =
1
n

and N = n in Sec. IV-A.

Each worker will then be expected to execute k subtasks, and

4The base performance of a worker can be obtained by performance
benchmarking or historical job completion time.



all n workers will then be expected to execute kn subtasks,

which are sufficient to decode if there is no straggler. In this

case, we can see that the algorithm in Sec. IV-A is simply a

special case of this algorithm for heterogeneous workers. In

other words, the initial subtasks to execute on each worker

will be shifted by k subtasks from the previous worker.
Similarly, when we have heterogeneous workers, we expect

Worker i to execute wikN subtasks, and thus we move the

starting subtasks down by wikN when we consider the next

worker. In this way, we can maximize the chance of decoding

with
∑

i wikN = kN expected subtasks, as each row in

Fig. 3 will now have k subtasks executed. Otherwise, when

there are no more than r = n − k stragglers, other workers

should continue to execute their following subtasks until the

completed subtasks are sufficient to decode. We summarize

the algorithms described above of the master and workers in

Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Master’s algorithm.

1: p ret = 〈〉
2: while p ret cannot be decoded do

3: receive a partial result y

4: p ret = 〈p ret, y〉.
5: end while

6: stop all workers

7: ret = decode(p ret)

8: return ret

Algorithm 2 Worker’s algorithm.

1: j = (
∑i−1

l=1 wikN) mod N + 1
2: while this task is not stopped by the master do

3: compute y = Ai,jX

4: send y to the master

5: j = (j + 1) mod N + 1
6: end while

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the workload

assignment in Spinner. We assume that the time for a server to

finish the whole job follows a runtime cumulative distribution

function F (t), such that the probability that the server can

finish the job of calculating AX within an amount of time

t is F (t). We also assume that f(t) is the corresponding

probability density function, the expected job completion time

on this server is E[t] =
∫ +∞

t=0
t · f(t)dt. We further assume

that the runtime distribution to complete a task can be scaled

from F (t), and thus the runtime distribution to finish a task

of calculating AiX on this server will be F (kt). When there

is no redundant task, i.e., n = k, and all other n − 1 servers

are the same as this one, the runtime distribution of the whole

job will be [F (kt)]n, as all n tasks need to be finished.

A. Conventional Coded Matrix Multiplication

In our analysis, we still start from homogeneous servers

and then extend the analysis to heterogeneous servers. Con-

ventional matrix multiplication does not divide tasks into

subtasks, i.e., N = 1. If all workers are homogeneous, we

have F1(t) = . . . = Fn(t) = F (t). The job can be finished

when there are at least k tasks finished. Therefore, the runtime

distribution of the whole job is

F
N=1
homo (t) =

n
∑

k0=k

(

n

k0

)

(F (kt))k0(1− F (kt))n−k0 .

Note that we do not consider the time of decoding in this

section, which is discussed in Sec. VI.

If workers are heterogeneous, it is now necessary to dis-

tinguish runtime distributions of different workers. We also

use binary variables ei, i = 1, . . . , n to indicate if Worker i

finishes its task before the time t, i.e., ei = 1 if Worker i

completes the task and ei = 0 otherwise. Still, the job can

be completed when there are at least k workers finishing their

tasks, i.e.,
∑

ei ≥ k. Hence, the runtime distribution of the

job is

F
N=1
het (t) =

∑

∑

ei≥k

n
∏

i=1

(eiFi(kt) + (1− ei)(1− Fi(kt)) .

B. Spinner

Different from conventional coded matrix multiplication, in

Spinner we need to consider that the matrix Ai is further split

into submatrices. From Fig. 3 we can see that the job can

be finished when in each row we have at least k subtasks

executed.

Similar to F
N=1
homo (t), we can derive the runtime distribution

of the j-th row. Note that for convenience, here we temporarily

change the sequential index of each row so that it starts from

0 and ends with n− 1, i.e., 0 ≤ j ≤ n− 1.

R
j
homo(t) =

∑

∑

ei≥k

(

eiF

(

knt

((j − (i− 1)k) mod n) + 1

)

+ (1− ei)

(

1− F

(

knt

((j − (i− 1)k) mod n) + 1

)))

.

Because subtasks are sufficient for decoding when there are

k subtasks completed in all N = n rows, the overall runtime

distribution of the job is F
N=n
homo (t) =

∏n−1
j=0 R

j
homo(t).

When workers are heterogeneous, the major change will

also be the sequence of subtasks. As each worker will shift

the starting subtasks by wikN , we need to subtract such shifts

when calculating the actual sequences of subtasks. Hence, we

can get R
j
het(t), the runtime distribution of the j-th row, and

the overall runtime distribution is F
N
het(t) =

∏N−1
j=0 R

j
het(t).

R
j
het(t) =

∑

∑

ei≥k











eiFi











knt

((j −
i−1
∑

l=1

wlkN) mod N) + 1











+ (1− ei)











1− Fi











knt

((j −
i−1
∑

l=1

wlkN) mod N) + 1































.



We first prove the runtime distribution of a Spinner job

in a homogeneous cluster. The job has results from sufficient

subtask to decode if and only if there are k subtasks finished in

all the N = n rows. In each row, we use the binary variable ei
to indicate if the corresponding subtask of Worker i is finished.

Hence, one row is completed if
∑

i ei ≥ k.

If ei = 1, it means that the corresponding subtask is

finished. In order to calculate the probability that it can be

finished within an amount of time t, we must consider the

execution sequence of subtasks of its worker. In other words,

the fact that this task is finished infers that all of its previous

subtasks in different rows must have also been finished. For

example, if this task is the third subtasks when n = 5, it

means that 60% of the task has been finished. We know that

in a homogeneous cluster, each worker will execute k subtasks,

and thus the first subtask to execute on Worker i should be

((i − 1)k mod n)-th subtask. Note that we have changed the

sequence index from 0 to n− 1. Now we know that the j-th

subtasks finished on this worker means that there are already

((j − (i− 1)k) mod n) + 1 subtasks finished. As there are n

subtasks on a worker, the run time distribution of such subtasks

finished is equivalent to that of
((j−(i−1)k) mod n)+1

kn
of a job

finished, and then we can have the scaled runtime distribution

of such subtasks.

For the heterogeneous cluster, the only change is that we

need to consider the number of tasks expected to execute on

each worker, i.e., wlkN . Therefore, the first subtask executed

on Worker i is (
∑i−1

l=1 wlkN) mod N , and thus the j-th sub-

task completed means that
(

(j −
∑i−1

l=1 wlkN) mod N
)

+ 1

tasks have finished. Therefore, we can get R
j
het(t).

Fig. 4: A comparison of the job completion time between

conventional coded matrix multiplication and Spinner.

C. Comparison

We use the analysis above to compare the performance

between Spinner and conventional coded matrix multiplication

with MDS codes (vanilla MDS), and matrix multiplication

without coding. We assume that the runtime distribution

of a worker follows a shifted-exponential distribution, i.e.,

Fi(x) = 1 − e−µi(x−ci), x ≥ ci. Therefore, we have Wi =
E[fi(kt)] = k( 1

µi

+ ci).
In our evaluation, we assume n = 12 and k = 8. We

consider both two cases of homogeneous and heterogeneous

workers. For the case that all workers are homogeneous, we

let ci = 1, i = 1, . . . , 20. When workers are heterogeneous,

we assume that ci = 3 when 1 ≤ i ≤ 10, and ci = 1
when 11 ≤ i ≤ 20. In this way, the baseline (non-straggling)

performance of the first ten workers will be twice as that of

the last ten workers.

We show the runtime cumulative distribution function of the

whole job in Fig. 4. We can see that for both homogeneous

workers and heterogeneous workers, Spinner can significantly

improve the overall job completion time. For the medium job

completion time, Spinner can save the time by 21.0% (homo-

geneous) and 24.5% (heterogeneous). For the tail latency, we

also observe that the 90-percentile tail of the job completion

time can be improved by 22.0% (homogeneous) and 21.5%
(heterogeneous). In fact, when workers are heterogeneous, we

can see in Fig. 4 that the top 36% of the jobs without coding

may even be faster than those with conventional coded matrix

multiplication. The reason is that with the same number of

workers, the overhead of each task can be lower without

coding, as the matrix A can now be divided into n = 12
matrices rather than k = 8 matrices. However, Spinner can

always enjoy better job completion time thanks to its better

parallelism.

VI. CODING SCHEME IN SPINNER

A. Decoding Complexity

Another problem we aim to mitigate in Spinner is the

complexity of decoding. When the result of the job is large,

decoding results of coded tasks may significantly increase the

overall job completion time. In conventional coded matrix

multiplication, decoding results from coded tasks is inevitable,

unless all uncoded tasks are executed by the k fastest workers.

The more results from coded tasks, the more time it takes to

decode them.

We first analyze the decoding complexity, in terms of the

expected number of results from coded tasks, in conventional

coded matrix multiplication. We assume that workers are

randomly chosen regardless of their performance. Therefore,

each worker has the same chance to become one of the

fastest k workers. We assume that n ≤ 2k, i.e., the number

of coded tasks is less than the number of uncoded tasks,

which is a common practice in coded distributed comput-

ing. Then, the expected number of coded task to decode is

n−k
∑

x=0









x ·





n− k

x









k

k − x









n

k













= k(n−k)
n

.

We now consider the case where there is only one straggler,

as in practice having one straggler is more likely than having

more stragglers [20]. If only one worker becomes a straggler,

which completes its task slower than its expected time, we

prove that the expected number of coded tasks to decode does

not change.

We only need to consider the case that the straggler should

have been faster than at least n− k other workers. Otherwise,

the number of results from coded tasks should not change



at all. In this case, if the straggler is running a coded task

(with a probability of n−k
n

), then it has a chance of k
n−1 to

be replaced by a worker running an uncoded task. Similarly,

if the straggler is running an uncoded task (with a probability

of k
n

), then it has a chance of n−k
n−1 to be replaced by a worker

running a coded task. Therefore, we can see that the expected

number of changes is n−k
n

· k
n−1 − k

n
· n−k
n−1 = 0.

On the other hand, after applying the workload assignment

algorithm in Spinner, the expected number of results from

coded subtasks will be
∑n

i=k+1 wikN . The expected value

of
∑n

i=k+1 wi is n−k
n

as
∑

i wi = 1, and thus the expected

number of results from coded subtasks is
k(n−k)N

n
, the same

as that without Spinner.

We can also prove that the expected number of coded tasks

will not change when there is one worker becoming a straggler.

Considering one subtask missed by this straggler, applying a

similar argument as above, we can prove that the expected

number of uncoded subtasks replaced by coded subtasks

equals the expected number of coded subtasks replaced with

uncoded subtasks. Hence, the expected number of results from

coded tasks will not change.

B. Coding scheme

By the analysis above, we can see that the workload

assignment algorithm in Spinner cannot improve the decoding

complexity. However, in Spinner, we can convert an existing

coding scheme according to the performance heterogeneity,

while the number of tolerable stragglers and the coding com-

plexity will not change. The technique we use is known as the

symbol remapping, which has been used in the construction

of some existing erasure codes [33], [34], [40], [41].

For simplicity, we show a toy example of how symbol

remapping works in Spinner. Assume that we originally have

a (3, 2) MDS code which encodes AX into three tasks: A1X ,

A2X , and (A1 +A2)X. In Spinner, we further partition each

task into N = 2 subtasks. We show the generator matrix after

partitioning and the equation of encoding in Fig. 5a .

In a generator matrix G, if a square submatrix G0 is

invertible, we can have a new code Ĝ = G·G−1
0 . From Sec. IV,

we can see that the kN subtasks expected to complete in each

worker are sufficient to decode, and thus their corresponding

rows in the generator matrix are also an invertible submatrix.

In Fig. 5a we highlight an example of such expected subtasks,

assuming three heterogeneous workers. As shown in [40], the

new code Ĝ will be linearly equivalent to the original code so

that the decoding can be performed in the same way with the

same complexity.

In Fig. 5b, we show a linearly equivalent code after applying

symbol remapping from Fig. 5a. We can still tolerate any n−
k = 1 straggler as the new code is still MDS, and recover

AX with the kN subtasks if the corresponding subtasks in

Fig. 5a can be decoded. Hence, the algorithms of workload

assignment in Sec. IV will still work.

After symbol remapping, if none of the workers are strag-

glers, there will be no coded subtask to decode. Now we con-

sider the case that one worker becomes a straggler. We assume

Fig. 5: An illustration of symbol remapping in Spinner where

n = 3, k = 2, N = 2.

that when the job finishes, the straggler misses x subtasks, i.e.,

the number of its completed subtasks is wikN − x. We can

then infer that such missed subtasks will be replaced by the

same number of coded subtasks, and thus the expected number

of coded tasks to be decoded is also x
N

∈ (0, wik). If each of

the n workers has the same chance of becoming a straggler,

the upper bound of the expected number of coded tasks to

decode is
∑

i
wik

n
= k

n
.

In Fig. 6, we summarize the expected number of coded

tasks to be decoded of the three schemes discussed above. We

can see that with symbol remapping, Spinner can improve the

decoding complexity by at least n−k times when there is one

straggler. When the straggler is only slightly slower than its

expected performance, the decoding complexity can be even

lower.

scheme no straggler one straggler

conventional coded

matrix multiplication
k(n−k)

n

k(n−k)
n

Spinner (workload

assignment only)
k(n−k)

n

k(n−k)
n

Spinner

(workload assignment

+ symbol remapping)

0 ≤ k
n

Fig. 6: Comparison of the coded tasks of conventional coded

matrix multiplication, Spinner with workload assignment only,

and Spinner with workload assignment and symbol remapping.

VII. EVALUATION

In this section, we present the empirical results of running

Spinner-based distributed matrix multiplication on homoge-

neous and heterogeneous workers. We then integrate Spinner

into linear regression which requires matrix multiplication and

evaluate the performance with existing coding schemes.



A X

SQUARE × SQUARE 2880 × 2880 2880 × 2880

FAT × THIN 960 × 50000 50000 × 960

THIN × FAT 4800 × 100 100× 4800

Fig. 7: Configurations of jobs.

A. Matrix multiplication

We first implement a distributed matrix multiplication job

that calculates the multiplication of AX using OpenMPI [27].

We first place corresponding matrices Ai and X on each

worker. The master will then instruct each worker to multiply

the two corresponding matrices in each task, and continuously

polls (using MPI.Probe) to check if there is one worker which

has finished one subtask. The matrix multiplication on each

worker is calculated using the NumPy library. When a worker

finishes one subtask, it will send the result back to the master

using MPI.Send. When the master receives one result of a

subtask, it will also check if all received results are sufficient

to be decoded. If so, the master will stop receiving any new

results and start decoding.

We run jobs of matrix multiplication on 25 virtual machines

hosted in Microsoft Azure. One of such virtual machines is

used as the master across all experiments, of type F4. The

other 24 virtual machines are used as workers, and they have

different types in different experiments below.

We measure the performance of the following schemes in

our experiments: conventional matrix multiplication with MDS

codes (vanilla MDS), Spinner with workload assignment only

(SP-WA), and Spinner with both workload assignment and its

coding scheme (SP). Specifically, in vanilla MDS we actually

use Reed-Solomon codes, a popular family of MDS codes,

to encode the matrix and decode results of tasks. Besides,

we implement one more coding scheme (GLO) proposed by

Kiani et al. that also supports subtasks [14]. Different from

Reed-Solomon codes and Spinner, the matrix in each task

or subtask is no longer encoded from k tasks or subtasks,

but from all subtasks in k original tasks. Theoretically, GLO

should have a better performance than Spinner as the results

from any kN subtasks should be decoded. However, in our

experiments, we observe that Spinner actually outperforms

GLO because of the high decoding complexity of GLO and

the workload assignment of Spinner.

For each scheme, we measure task completion time, which

is the time that the master can get sufficient results for

decoding, and decoding time, which is the time that the master

spends to decode results from tasks or subtasks. The job

completion time is then the sum of task completion time and

decoding time. In each of the following figures, we repeat each

experiment by 20 times and present the average result and the

standard deviation.

We first study the job completion time and decoding time

with different types of jobs. We run three jobs with different

shapes of input matrices: SQUARE × SQUARE, THIN ×
FAT, and FAT × THIN. We show the sizes of A and X in

Fig. 7. The values of n and k in all coding schemes are set

to be 24 and 20. In this experiment, all 24 workers are virtual

machines of type B4. We show the job completion time and

task completion time of each scheme in Fig. 8, where the

decoding time can be seen from the gap. We can see that in

the three jobs, compared to vanilla MDS, SP-WA saves task

completion time by 11.1%, 28.3%, and 24.2%, respectively.

The decoding time in SP-WA is slightly higher than vanilla-

MDS due to its subtasks. However, in SP its decoding time is

much lower. With its coding scheme, the job completion time

of SP is lower than vanilla-MDS by 53.6%, 35.2%, and 84.0%
in the three jobs. Moreover, the task completion time of SP-

WA and SP is rather close to that of GLO, which is expected

to be optimal. However, since the decoding time of GLO is

the highest among all schemes, its job completion time is even

higher than SP.

Fig. 8: Job completion time (JOB) and task completion time

(TASK) in a homogeneous cluster with 24 workers.

We now run more experiments in heterogeneous clusters,

which still have 24 workers. Each cluster has two types of

virtual machines, of type B4 and F4. We run the same tasks

on virtual machines of such two types, and observe that B4

is almost 1.5 times faster than F4. We create five clusters,

where the ratio of virtual machines of type F4 increases from

0% to 25%, 50%, 75%, and eventually 100%. We run one

job in all such clusters, where the sizes of two matrices are

Fig. 9: Job completion time in heterogeneous clusters with 24

workers.



2880×50000 and 50000×640. The sizes of such two matrices,

hence, are chosen to make the decoding time marginal in the

job, and the job completion time is almost the same as the

task completion time. We still let n = 24, but set k = 12.

As n = 2k this time, we add one more scheme of replication

(REP), where each task is replicated on two workers.

In Fig. 9, we can see that with more virtual machines of type

F4, the job completion time of all schemes also increases in

general. However, the time of vanilla MDS and REP increases

more drastically, as they cannot take advantage of partial

results in slower workers, especially in such heterogeneous

clusters with natively slower workers. Compared with vanilla

MDS, the time saved by SP ranges between 38.2% and 49.3%
in the five clusters. Similar to the results in homogeneous

clusters, the job completion time of SP also outperforms GLO,

thanks to its much lower decoding time.

B. Linear Regression

We now integrate the Spinner-based distributed matrix

multiplication into a linear regression job. We implement a

coded gradient descent job for linear regression following the

approach in [2]. We consider the problem of minx f(x) ,

minx
1
2 ||Ax − y||2, where y ∈ R

q is the label vector, and

A ∈ R
q×r is the data matrix, and x ∈ R

r is the unknown

weight vector to be trained. The gradient descent algorithm

works as follows. After initializing the weight vector as x(0),

we update it iteratively as x(t+1) = x(t) − γ∇f(x(t)) =
xt − γAT (Ax(t) − y), t ≥ 0. Therefore, east step can be

completed with two matrix multiplications, i.e., z(t) , Ax(t),

and AT (z(t) − y).
In our implementation, we encode A and AT with (n, k)

MDS codes which will also be converted into linearly equiva-

lent codes in Spinner. As only x is updated in each step, A and

AT need to be encoded only once for each worker. In each

step, we first broadcast x(t) to all workers, and let each worker

runs their corresponding task. The master collects the results

from workers and decodes them into z(t) = Ax(t). The master

then calculates z(t) − y and broadcasts it to all workers so as

to calculate the second matrix multiplication AT (z(t) − y).
After decoding, the master will get AT (z(t) − y) so that we

can update x(t) into x(t+1). All tasks will be immediately

terminated once the master has received sufficient (partial)

results for decoding and the workers will be forced to run

the tasks of the next matrix multiplication.

As shown in Fig. 10, we generate the data matrix A

randomly in three different sizes. We then encode A and AT

with (12, 8) MDS codes. We first run the linear regression

job on a cluster hosted on Microsoft Azure with the master

still running on a virtual machine of type F4 and 12 other

workers running on virtual machines of type B4. We run all

the jobs with 500 steps. Each job is still repeated by 20 times

and we present their average time. In Fig. 10, we present the

completion time of the three jobs with three schemes. We

can observe that in all three jobs with different shapes of

A, SP can be consistently faster than vanilla MDS codes by

38.5%, 36.0%, and 32.1%, respectively. Similar to the results

Fig. 10: Job completion time of linear regression in a homo-

geneous clusters with 24 workers.

of matrix multiplication, GLO performs the worst due to its

overwhelmingly high decoding complexity.

Fig. 11: Job completion time of linear regression in heteroge-

neous clusters with 24 workers.

We now run the job where A is a 8160×8160 matrix in five

clusters with different types of virtual machines. In Fig. 11, the

five clusters contain 12 virtual machines of types B4 and/or

B1, where B4 servers are almost twice faster than B1 servers.

We can observe similar performance patters as in Fig. 9, with

the performance gain of SP being up to 40.7% better than

vanilla MDS codes. While GLO is still the slowest scheme, it

is interesting to observe that in two heterogeneous clusters,

GLO can surprisingly perform better than itself in 12 B4

servers which are expected to be fastest among all five clusters.

We find that this is because in these two heterogeneous clusters

the tasks on all B4 servers are among the first k tasks that are

actually uncoded tasks. As they make more contributions in

the job than B1 servers, the results from coded tasks become

fewer than those in homogeneous clusters where each worker

makes similar contributions. Because of the high decoding

complexity in GLO, such savings of decoding overhead even

compensate for the losses of task completion time.

VIII. CONCLUSIONS

Existing coded matrix multiplication can lead to a signifi-

cant waste of system resources, as the results on stragglers

will be disregarded. In this paper, we propose Spinner, a

framework for coded distributed matrix multiplication where

we exploit the partial results of tasks on stragglers in a



heterogeneous cluster. We have also minimized the complexity

of decoding results from coded tasks in Spinner. Combining

these two methods, Spinner can significantly improve the

overall performance of distributed matrix multiplication, as

well as linear regression workloads with Spinner integrated.
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