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Abstract

Matrix multiplication is a fundamental operation in many machine learning al-
gorithms. With the size of the dataset increasing rapidly, it is now a common
practice to compute large-scale matrix multiplication on multiple servers, such
that each server multiplies submatrices inside the input matrices. As straggling
servers are inevitable in a distributed infrastructure, various coding schemes have
been proposed which deploy coded tasks encoded from the submatrices of input
matrices. The overall result can then be decoded from a subset of such coded tasks.
However, as the resources are shared with other jobs in a distributed infrastructure
and their performance can change dynamically, the optimal way to encode the input
matrices may also change over time. So far, existing coding schemes for matrix
multiplication all require to split the input matrices and encode them in advance,
and cannot change the coding schemes or adjust their parameters after encoding.
In this paper, we propose a coding framework that can dynamically change the
coding schemes and their parameters, by only re-encoding local data in each task.
We demonstrate that the original tasks can be quickly converted into new tasks only
incurring marginal overhead.

1 Introduction

Matrix multiplication is an essential building block in various machine learning algorithms. With
the growing size of the dataset, it is now common that the input matrices are too large to calculate
the multiplication on a single server. Therefore, it becomes common to run such algorithms on
multiple servers in a distributed infrastructure, e.g., in a cloud, where each server executes a task
multiplying two smaller matrices. However, it is well known that servers in a distributed infrastructure
are not reliable, and are subject to various faulty behaviors [1]. For example, servers may experience
temporary performance degradation, due to load imbalance or resource congestion [2]. Therefore,
when distributing computation onto multiple servers, the progress of the algorithm can be significantly
affected by the tasks running on such slow or failed servers, which we call stragglers.

In order to tolerate stragglers in distributed matrix multiplication, a naive method is to replicate each

task on multiple servers. For example, to multiply A =

[
A1

A2

]
with B, i.e., AB =

[
A1B
A2B

]
, we can

replicate each of the two tasks, i.e.,A1B andA2B, on multiple servers. This method, however, suffers
from a high resource consumption. Only r stragglers can be tolerated when all tasks are replicated
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r + 1 times. On the other hand, coding-based approaches for distributed matrix multiplication have
been proposed to tolerate stragglers more efficiently, where each server multiplies coded submatrices
of A or/and B, e.g., (A1 +A2)B. Therefore, if we run this coded task with A1B and A2B, we can
recover the two submatrices in AB if any two of the three tasks are finished. Compared to replicating
each task on two servers, this coding scheme can tolerate the same number of stragglers with 25%
fewer tasks.

So far, existing coding schemes for matrix multiplication include polynomial codes [3], MatDot
codes [4], and entangled polynomial codes [5], etc. These three coding schemes support to split the
input matrices differently and thus achieve different recovery thresholds, i.e., the number of tasks
required to recover the overall result. The two coded matrices in each task must be encoded from
A and B in advance before multiplication. However, the best coding scheme (and the values of its
parameters) for a job of large-scale matrix multiplication usually depends on the resources such as
CPU and network bandwidth. For example, if CPU is the bottleneck, it is desirable to split A and B
into more submatrices. On the other hand, if the network bandwidth is limited, it becomes desirable
to complete the computation on fewer tasks. Unfortunately, the performances of resources in a cloud
are subject to change due to the shared nature of resources in the cloud. In this paper, we propose a
framework that supports to dynamically change the coding schemes and their parameters by only
locally re-encoding the coded matrices in each task, i.e., without receiving any additional data. We
demonstrate that polynomial codes and MatDot codes can be converted into entangled polynomial
codes and our framework can support a flexible adjustment of their parameters in general.

2 Motivating Examples

We now present that the coding scheme of a task can be dynamically changed with local re-encoding.
Specifically, tasks encoded with polynomial codes or MatDot codes can be converted into tasks
encoded with entangled polynomial codes. We demonstrate the re-encoding of tasks with toy
examples, and then present the general framework in Sec. 3.

Conversion from polynomial codes to entangled polynomial codes. We assume that a job of
A × B has been encoded with a polynomial codes, where A and B are split into 2 submatrices

vertically and horizontally, respectively. In other words, A =

[
A0

A1

]
, and B = [B0 B1] . Hence,

a coded task can be encoded as the multiplication of ÃP and B̃P, where ÃP = A0δ
0 + A1δ

2

and B̃P = B0δ
0 + B1δ

1. Here the value of δ should be unique in each task. Hence, ÃPB̃P =
A0B0δ

0 + A0B1δ
1 + A1B0δ

2 + A1B1δ
3, which is a polynomial of δ with a degree of 3. As the

value of δ in each task is unique, we can recover AiBj , 0 ≤ i, j ≤ 1, which are the coefficients of
such a polynomial, by interpolation from any four such tasks.

If we further split Ai and Bi as Ai = [Ai,0 Ai,1] and Bi =

[
B0,i

B1,i

]
, i = 0, 1, then A and B are

both vertically and horizontally split into a total of four submatrices. An entangled polynomial code
can then be applied which encodes A and B into ÃEP = A0,0δ

0 + A0,1δ
1 + A1,0δ

4 + A1,1δ
5 and

B̃EP = B1,0δ
0 + B0,0δ

1 + B1,1δ
2 + B0,1δ

3. Hence, ÃEPB̃EP is a polynomial of δ with a degree
of 8, i.e., it can be interpolated with 9 tasks with different values of δ. The four submatrices in
AB, i.e., Ai,0B0,j + Ai,1B1,j , 0 ≤ i, j ≤ 1, can then be found as coefficients of δ1, δ3, δ5, and δ7,
respectively.

If we need to change the coding scheme from polynomial codes to entangled polynomial
codes, traditionally we can only encode A and B again from scratch with entangled polyno-
mial codes, consuming a significant amount of time and network bandwidth to deploy the new
coded matrices. However, we can see that ÃP can be horizontally split into two partitions, i.e.,[
A0,0δ

0 +A1,0δ
2 A0,1δ

0 +A1,1δ
2
]
. Similarly, B̃P can also be vertically split into two partitions[

B0,0δ
0 +B0,1δ

1

B1,0δ
0 +B1,1δ

1

]
. Hence, we can re-encode them as (A0,0δ

0 +A1,0δ
2)+(A0,1δ

0 +A1,1δ
2)δ0.5 =

A0,0σ
0+A1,0σ

4+A0,1σ
1+A1,1δ

5 where σ = δ0.5, and (B0,0δ
0+B0,1δ

1)δ0.5+(B1,0δ
0+B1,1δ

1) =
B0,0σ

1 +B0,1σ
3 +B1,0σ

0 +B1,1σ
2. If δ is unique in each task and is already chosen to be positive,

we can see that σ is also unique, and thus the task after re-encoding is equivalent as the task encoded
with an entangled polynomial codes.
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Conversion from MatDot codes to entangled polynomial codes. Different from polynomial
codes, MatDot codes split A and B horizontally and vertically, respectively. In other words,

A = [A0 A1] , and B =

[
B0

B1

]
. MatDot codes encode A and B as ÃMD = A0δ

0 + A1δ
1

and B̃MD = B1δ
0 + B1δ

1. Then ÃMDB̃MD is a polynomial of δ with a degree of 2, where
AB = A0B0 +A1B1 appears as the coefficient of δ1.

Similarly, if we further split Ai vertically as
[
A0,i

A1,i

]
, and Bi horizontally as [Bi,0 Bi,1],

i = 0, 1. We can then split ÃMD vertically as
[
A0,0δ

0 +A0,1δ
1

A1,0δ
0 +A1,1δ

1

]
, and B̃MD horizontally as[

B1,0δ
0 +B0,0δ

1 B1,1δ
0 +B0,1δ

1
]
. Hence, we can also re-encode them as (A0,0δ

0 +A0,1δ
1) +

(A1,0δ
0+A1,1δ

1)δ4 and (B1,0δ
0+B0,0δ

1)+(B1,1δ
0+B0,1δ

1)δ2, which are equivalent as entangled
polynomial codes.

3 General Results

In fact, polynomial codes can be seen as a special case of entangled polynomial codes with p = 1
and MatDot codes can be seen as a special case of entangled polynomial codes with m = n = 1.
Therefore, the motivating examples can be generalized as a framework that flexibly adjust the
parameters of entangled polynomial codes.

Beyond the motivating examples, we consider a more general case where the two in-
put matrices A and B can be equally divided into mp and np submatrices, i.e., A = A0,0 · · · A0,p−1

...
. . .

...
Am−1,0 · · · Am−1,p−1

 , and B =

 B0,0 · · · B0,n−1

...
. . .

...
Bp−1,0 · · · Bp−1,n−1

 . The example in Sec. 2 cor-

responds to the case of m = n = p = 2. In general, ÃEP and B̃EP are encoded from the mp and
np submatrices in A and B, respectively, leading to a recovery threshold of pmn+ p− 1 with an
(m,n, p) entangled polynomial code.1 In this paper, we propose a dynamic framework (details can
be found in Appendix B) that achieve the following property:

Theorem 1 A task encoded with an (m,n, p) entangled polynomial code can be locally re-encoded
into a task encoded with a (λmm,λnn, λpp) entangled polynomial code, where λm, λn, and λp are
positive integers.

From this theorem, we can see that if a job is originally encoded with an (m,n, p) entangled
polynomial code, we can further split and encode its ÃEP and B̃EP, such that the new tasks are encode
with a (λmm,λnn, λpp) entangled polynomial codes, without obtaining any additional data from
remote servers. Saving the complexity of each tasks by λmλnλp times by increasing the recovery
threshold to λmmλnnλpp+ λpp− 1, our framework achieves a tradeoff between computation and
communication overhead.2 As it is not necessary for each task to obtain any additional data as the
coded matrices in the new tasks can be directly re-encoded from ÃEP and B̃EP, leading to a marginal
overhead of re-encoding (experiment result can be found in Appendix D).

4 Conclusion

Although coded matrix multiplication has been demonstrated to tolerate stragglers, existing coding
techniques all require fixed parameters and cannot flexibly adjust the coding schemes or even the
values of their parameters. However, in a distributed infrastructure resources are known to be shared
and unreliable, making the optimal values of parameters change over time. In this paper, we propose
a dynamic framework for entangled polynomial codes which can change the values of parameters
locally on each server without incurring additional traffic, and thus significantly save the time and
communication overhead to complete the matrix multiplication with new parameters.

1Interested readers may find more details of entangled polynomial codes in Appendix A.
2Detailed analysis of complexity can be found in Appendix C.
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A Preliminaries

Assume that the input matrices A and B are split into m × p and p × n submatrices. With
entangled polynomial codes, if there are T servers in total, each server runs a task that cal-
culates C̃i(m,n, p) = Ãi(m,n, p) · B̃i(m,n, p), 1 ≤ i ≤ T . In particular, Ãi(m,n, p) =∑m−1
x=0

∑p−1
z=0 Ax,zδ

pnx+z
i , and B̃i(m,n, p) =

∑n−1
y=0

∑p−1
z=0 Bp−1−z,yδ

py+z
i . Therefore, we have

C̃i(m,n, p) =
∑m−1
x=0

∑n−1
y=0

∑2p−2
t=0

(∑min{p−1,t}
l=max{0,t−p+1}Ax,lBp−1−t+l,y

)
δpnx+py+t
i . We can see

that each C̃i(m,n, p) is a polynomial function of δi whose degree is pmn+ p− 2. Therefore, we can
solve the coefficients of δi with any pmn+ p− 1 out of the T tasks, as long as they have different
values of δi. In this paper, we assume that T is always larger or equal to the recovery threshold. In
other words, at most T − (pmn+ p− 1) stragglers can be tolerated.

In particular, we can find that the coefficient of δp−1
i in C̃i(m,n, p) is

∑p−1
l=0 Ax,lBl,y , 0 ≤ x ≤ m−1,

0 ≤ y ≤ n− 1. Therefore, we can obtain the mn submatrices in AB after decoding.

For example, when m = 2, n = 1, p = 2, we have A =

[
A0,0 A0,1

A1,0 A1,1

]
, and B =

[
B0

B1

]
. With

entangled polynomial codes, we have C̃i(2, 1, 2) = (A0,0δi
0 +A0,1δi

1 +A1,0δi
2 +A1,1δi

3)(B1δ
0 +

B0δ
1). If we have five tasks finished with different values of δi, i = 0, . . . , 4, we will get

δ0
0 δ1

0 δ2
0 δ3

0 δ4
0

δ0
1 δ1

1 δ2
1 δ3

1 δ4
1

δ0
2 δ1

2 δ2
2 δ3

2 δ4
2

δ0
3 δ1

3 δ2
3 δ3

3 δ4
3

δ0
4 δ1

4 δ2
4 δ3

4 δ4
4




A0,0B1

A0,0B0 +A0,1B1

A0,1B0 +A1,0B1

A1,1B1 +A1,0B0

A1,1B0

 . (1)

The matrix on the left in (1) is a Vandermonde matrix which is invertible, and thus we can decode it
by multiplying its inverse on the left or by Gaussian elimination. After decoding, we will be able to

get AB =

[
A0,0B0 +A0,1B1

A1,1B1 +A1,0B0

]
.

When p = 1, the corresponding code becomes polynomial codes whose recovery threshold is mn.
When m = n = 1, the corresponding code becomes MatDot codes whose recovery threshold is
2p− 1.

B Re-encoding of Entangled Polynomial Codes (Proof of Theorem 1)

B.1 Changing p to λpp

We first show that a task with an (m,n, p) entangled polynomial code can be converted into a task
with an (m,n, λpp) entangled polynomial code. We first assume that the two input matrices A and B
can be divided as:

A =

 A0,0 · · · A0,λpp−1

...
. . .

...
Am−1,0 · · · Am−1,λpp−1

 , and B =

 B0,0 · · · B0,n−1

...
. . .

...
Bλpp−1,0 · · · Bλpp−1,n−1

 .
Although it is not necessary for an (m,n, p) entangled polynomial code to split A horizontally and
B vertically into λpp partitions, it is required by the (m,n, λpp) entangled polynomial code after
conversion. Therefore, the task encoded by the (m,n, p) entangled polynomial code can be written
as

Ãi(m,n, p) =

m−1∑
x=0

p−1∑
z=0

[
Ax,λpz · · · Ax,λpz+λp−1

]
δpnx+z
i

=
[∑m−1

x=0

∑p−1
z=0 Ax,λpzδ

pnx+z
i · · ·

∑m−1
x=0

∑p−1
z=0 Ax,λpz+λp−1δ

pnx+z
i

]
,
[
Ãi,0(p,m, n) · · · Ãi,λp−1(p,m, n)

]
, (2)
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and

B̃i(m,n, p) =

n−1∑
y=0

p−1∑
z=0

 B(p−1−z)λp,y

...
B(p−1−z)λp+λp−1,y

 δpy+z
i

=


∑n−1
y=0

∑p−1
z=0 B(p−1−z)λp,yδ

py+z
i

...∑n−1
y=0

∑p−1
z=0 B(p−1−z)λp+λp−1,yδ

py+z
i

 ,

 B̃i,0(p,m, n)
...

B̃i,λp−1(p,m, n)

 . (3)

Now we are going to re-encode Ãi(m,n, p) and B̃i(m,n, p) into Ãi(m,n, λpp) and B̃i(m,n, λpp),
respectively.

First, we define δi = σ
λp

i . Then Ãi,l and B̃i,l can be rewritten as Ãi,l(p,m, n) =∑m−1
x=0

∑p−1
z=0 Ax,λpz+lσ

(pnx+z)λp

i , and B̃i,l(p,m, n) =
∑n−1
y=0

∑p−1
z=0 B(p−1−z)λp+l,yσ

(py+z)λp

i ,
l = 0, . . . , λp − 1.

We now re-encode Ãi(m,n, p) and B̃i(m,n, p) as

λp−1∑
l=0

Ãi,l(p,m, n)σli =

λp−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Ax,λpz+lσ
(pnx+z)λp+l
i =

m−1∑
x=0

λpp−1∑
z=0

Ax,zσ
λppnx+z
i

= Ãi(m,n, λpp), (4)

and

λp−1∑
l=0

B̃i,λp−1−l(p,m, n)σli =

λp−1∑
l=0

n−1∑
y=0

p−1∑
z=0

B(p−1−z)λp+λp−1−l,yσ
(py+z)λp+l
i

=

n−1∑
y=0

λpp−1∑
z=0

Bλpp−1−z,yσ
λppy+z
i = B̃i(m,n, λpp). (5)

We can see that in (4) and (5), we construct the Ãi(m,n, λpp) and B̃i(m,n, λpp) from data in
Ãi(m,n, p) and B̃i(m,n, p), respectively.

B.2 Changing m to λmm

Now we show that a task with an (m,n, p) entangled polynomial code can be locally converted into
a task with a (λm, n, p) entangled polynomial code.

For simplicity, we assume that A can be vertically split into λmm partitions. In other words,

A =

 A0,0 · · · A0,p−1

...
. . .

...
Aλmm−1,0 · · · Aλmm−1,p−1


Hence, we have

Ãi(m,n, p) =

m−1∑
x=0

p−1∑
z=0

 Aλmx,z

...
Aλmx+λm−1,z

 δpnx+z
i =


∑m−1
x=0

∑p−1
z=0 Aλmx,zδ

pnx+z
i

...∑m−1
x=0

∑p−1
z=0 Aλmx+λm−1,zδ

pnx+z
i



,

 Ãi,0(p,m, n)
...

Ãi,λm−1(p,m, n)

 . (6)
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Since B̃i(m,n, p) is not a function of m, we need to re-encode Ãi(m,n, p) only when we adjust the
value of m. When m is changed to λmm, we will re-encode Ãi(m,n, p) as

λm−1∑
l=0

Ãi,l(p,m, n)δlpmn =

λm−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Aλmx+l,zδ
pnx+z+lpmn
i

=

λm−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Aλmx+l,zδ
pn(lm+x)+z
i = Ã′i(λmm,n, p).

Here, after re-encoding, we generate Ã′i(λmm,n, p) which is encoded by a (λmm,n, p) entangled
polynomial code from a matrix A′ with rows in A switched:

A′ =



A0,0 · · · A0,p−1

Aλm,0 · · · Aλm,p−1

...
...

...
Aλm(m−1),0 · · · Aλm(m−1),p−1

A1,0 · · · A1,p−1

...
...

...
Aλm(m−1)+1,0 · · · Aλm(m−1)+1,p−1

...
...

...

Aλm−1,0 · · · Aλ1,p−1

...
...

...
Aλm(m−1)+λm−1,0 · · · Aλm(m−1)+λm−1,p−1



.

Although the sequence of rows in A is switched, it will not change the result after decoding, since the
sequence of rows in AB can be switched back in the same way.

B.3 Changing n to λnn

Similarly, we alao assume that B can be horizontally split into λnn partitions, i.e.,

B =

 B0,0 · · · B0,λnn−1

...
. . .

...
Bp−1,0 · · · Bp−1,λnn−1

 .
The matrix B can then be encoded by an (m,n, p) entangled polynomial code as follows.

B̃i(m,n, p) =

n−1∑
y=0

p−1∑
z=0

[Bp−1−z,λny · · · Bp−1−z,λny+λn−1] δpy+z
i

=
[∑n−1

y=0

∑p−1
z=0 Bp−1−z,λnyδ

py+z
i · · ·

∑n−1
y=0

∑p−1
z=0 Bp−1−z,λny+λn−1δ

py+z
i

]
,
[
B̃i,0(p,m, n) · · · B̃i,λn−1(p,m, n)

]
. (7)

When we change n to λn, we also need to re-encode B̃i(m,n, p) only as

λn−1∑
l=0

B̃i,l(p,m, n)δlpmn =

λn−1∑
l=0

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+lδ
py+z+lpmn
i

7



Although it cannot be directly written as B̃i(m,λnn, p), we show that it is equivalent as an
(m,λnn, p) entangled polynomial code, as they achieve the same recovery threshold. Since

Ãi(m,n, p) ·

(
λn−1∑
l=0

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+lδ
py+z+lpmn
i

)

=

(
m−1∑
x=0

p−1∑
z=0

Ax,zδ
pnx+z
i

)
·

(
λn−1∑
l=0

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+lδ
py+z+lpmn
i

)

=

m−1∑
x=0

λn−1∑
l=0

n−1∑
y=0

2p−2∑
s=0

min{p−1,s}∑
z=max{0,s−p+1}

Ax,zBp−1−z,λny+lδ
pmnl+pnx+py+s
i (8)

Therefore, the degree of the polynomial in (8) is pmn(λn − 1) + pn(m− 1) + p(n− 1) + 2p− 2 =
pmλnn+ p− 1, which is the same as that of an (m,λnn, p) entangled polynomial code. Moreover,
we can get the submatrices in AB, i.e.,

∑p−1
z=0 Ax,zBp−1−z,λny+l, when s = p− 1.

B.4 Changing (m,n, p) to (λmm,λnn, λpp)

In general, when we need to change the values of the three parameters at the same time,3 we can
simply apply the three steps above individually. We note that when λm 6= 1 or λn 6= 1, we will not
construct the exact Ãi(m,n, p) or B̃i(m,n, p). Rows in A are virtually shuffled when λm 6= 1. If
λn 6= 1, neither Ãi(m,λnn, p) nor B̃i(m,λnn, p) is constructed exactly but they can maintain the
recovery threshold of the corresponding entangled polynomial code. Therefore, we will first convert
p to λpp, then m to λmm, and finally n to λnn.

Therefore, assume that each task is originally encoded with an (m,n, p) entangled polynomial code.
If A and B are of size Λmm × Λpp and Λpp × Λnn, then each task can be converted into any
(λmm,λnn, λpp) entangled polynomial code, as long as λm|Λm, λn|Λn, and λp|Λp. The more
divisors Λm, Λn, and Λp have, the more entangled polynomial codes that we can convert to.

Moreover, even though λm/λn/λp is not a divisor of Λm/Λn/Λp, we can still add all-zero additional
rows or columns into Ãi or/and B̃i so that they can be divisible. As Ãi and B̃i are linear combinations
of submatrices in A and B, respectively, it is equivalent to adding additional rows or/and columns in
A and B, which will only add addtional rows or/and columns with zero elements but not change any
existing element in the result. The overhead of such padding is at most

(
1 + λm

Λm

)(
1 +

λp

Λp

)
of Ãi

and
(

1 + λn

Λn

)(
1 +

λp

Λp

)
of B̃i, which is marginal if λm � Λm, λn � Λn, and λp � Λp.

C Complexity Analysis

We now discuss the complexity of our framework, especially the complexity of its re-encoding, and
compare it to the complexity of the original entangled polynomial code. We find that the complexity
of re-encoding is marginal compared to the original complexity of the entangled polynomial code,
which means that the overhead of re-encoding can be much cheaper than encoding all tasks again
from scratch.

We analyze the complexity as the number of multiplication, since the overhead of addition is much
cheaper than that of multiplication. In fact, as the code in this paper are linear, the scale of addition is
the same to that of multiplication or smaller.

We assume the sizes of A and B are M × P and P × N , and then the sizes of Ãi(m,n, p) and
B̃i(m,n, p) are M

m ×
P
p and P

p ×
N
n , respectively. When we encode a task with an (m,n, p)

entangled polynomial code, both Ãi(m,n, p) and B̃i(m,n, p) are encoded as a linear combination
of mp submatrices in A and np submatrices in B. Therefore, each element in A and B will be
multiplied with a constant, and the complexity of Ã and B̃ are O(MP ) and O(NP ), respectively. In

3Changing two paramters can be seen as a special case.
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addition, the constants are powers of δi, leading to pn(m− 1) + (p− 1) multiplications. However,
this complexity can be ignored as we assume A and B are large matrices.

As a comparison, when we adjust the values of (m,n, p), the complexity of re-encoding is much
lower. When p changes to λpp, Ã and B̃ should be further split into λp partitions and re-encoded
into their linear combinations. Hence, their numbers of multiplications are O(MP

mp ) and O(NPnp ),
respectively. Similarly, when the value of m or n changes, its complexity is also O(MP

mp ) or O(NPnp ).
Therefore, in the general case when (m,n, p) is changed to (λmm,λnn, λpp), the overall complexity
is O(MP

mp + NP
np ).

Given the sizes of Ã and B̃, the complexity of matrix multiplication in a task with an (m,n, p)
entangled polynomial code is MNP

mnp . After re-encoding, the complexity of the matrix multiplication
becomes MNP

λmmλnnλpp
. Therefore, the complexity of a task, including re-encoding and matrix multi-

plication, is O
(
P
p

(
M
m + N

n + MN
λmmλnnλp

))
= O( MNP

λmmλnnλpp
) if M and N are much larger than

λm and λnn, respectively. In other words, the complexity of re-encoding is also marginal to that of
the task.

We can also find that the decoding overhead of the job will not be affected after conversion. Compared
to a job with a (λmm,λnn, λpp) entangled polynomial code, the decoding overhead of the dynamic
entangled polynomial code after re-encoding will be the same, since the new code will be equivalent
to a (λmm,λnn, λpp) entangled polynomial code.

D Evaluation

We implement our design with OpenMPI [6], and run the jobs of matrix multiplications on a cluster of
T + 1 servers, where one server will run as a master and the other T servers will be used as workers.
Initially, all tasks are encoded with an (m,n, p) entangled polynomial codes. The two input matrices
A and B are encoded by the master, which then sends Ãi(m,n, p) and B̃i(m,n, p) to Worker i,
i = 1, . . . , T . In each experiment, we assume that there will be no more than 5 stragglers to tolerate,
and thus only a subset of workers will multiply the two coded matrices, and uploads the result to the
master. The master, on the other hand, will keep polling if any new result has been received. It will
stop receiving any new result once the number of results received reaches the corresponding recovery
threshold, and terminate other unfinished tasks. In each experiment, due to the change of recovery
threshold with different values of m, n, and p, we let T = 72 such that the number of servers are
always sufficient for any change of parameters in each experiment.

In our experiments, we focus on the case when the values of parameters need to be changed, and
we compare two schemes. One is re-encoding by static entangled polynomial codes (static RE),
which encodes all tasks again from scratch and sends Ãi(λmm,λnn, λpp) and B̃i(λmm,λnn, λpp)
to Worker i, i = 1, . . . , T . The other is our framework, i.e., dynamic re-encoding of entangled
polynomial codes (dynamic RE), which directly re-encodes Ãi(m,n, p) and B̃i(m,n, p) on each
local worker into Ãi(λmm,λnn, λpp) and B̃i(λmm,λnn, λpp), respectively. The rest of such two
schemes are the same, i.e., multiplying Ãi(λmm,λnn, λpp) and B̃i(λmm,λnn, λpp) on workers
and uploading the result to the master. Note that although all T workers have the coded matrices for
the corresponding task, which are used by re-encoding if necessary, we do not run all of them in each
job in order to make a fair comparison. In fact, we fix the number of stragglers to tolerate as 5, such
that the actual number of workers running equals the corresponding recovery threshold plus 5.

We now present our evaluation results running on a cluster of virtual machines hosted on Amazon
EC2. We run the master on a virtual machine of type t2.xlarge and all workers on virtual machines
of type t2.small. We set initial values of (m,n, p) as (2, 2, 2), and encode input matrices of three
jobs. The sizes of input matrices of such three jobs are shown in Fig. 1. In each job, we change the
parameters with four configurations of (λm, λn, λp): (4, 1, 1), (1, 8, 1), (1, 1, 4), and (2, 2, 2). In
other words, we change the value of only one parameter in the first three configurations and change
the values of all parameters in the last configuration.

We first compare the overhead of re-encoding in Fig. 2. With each configuration, we repeat each
job 50 times and obtain the mean and standard deviation of its results. As for dynamic RE, the
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Job 1 Job 2 Job 3
A 1024× 2048 2048× 2048 2048× 1024
B 2048× 4096 2048× 2048 1024× 2048

Figure 1: Sizes of input matrices in the three jobs.
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Figure 2: Overhead of re-encoding with different values of (λm, λn, λp).

overhead of re-encoding comes only from re-encoding Ãi and B̃i locally. However, the static RE will
be performed solely at the master, including the communication overhead of distributing all coded
tasks as well. Therefore, although originally the time of static RE is between 1.79 seconds and 10.79
seconds, the dynamic RE only needs 0.026 seconds on average at most.

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(¸m ;¸n ;¸p )

0

2

4

6

8

10

12

14

16

ti
m

e
 (

se
c.

)

(a) Job 1

static RE

dynamic RE

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(¸m ;¸n ;¸p )

0
2
4
6
8

10
12
14
16

ti
m

e
 (

se
c.

)

(b) Job 2

static RE

dynamic RE

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(¸m ;¸n ;¸p )

0

2

4

6

8

10

ti
m

e
 (

se
c.

)

(c) Job 3

static RE

dynamic RE

Figure 3: Job completion time with re-encoding.

Compared to the whole job completion time in Fig. 3, we can see that the overhead of dynamic RE
in Fig. 2(a) is marginal. We also compare its job completion time with that of static RE. Due to the
saved re-encoding overhead, we can observe that the job completion time can also be saved by up to
92.7%.
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