
Local Re-encoding for Coded Matrix Multiplication
Xian Su∗, Xiaomei Zhong†, Xiaodi Fan∗, Jun Li∗

∗School of Computing and Information Sciences, Florida International University
†School of Software, East China Jiaotong University

Abstract—Matrix multiplication is a fundamental operation
in various machine learning algorithms. With the size of the
dataset increasing rapidly, it is now a common practice to
compute the large-scale matrix multiplication on multiple servers,
with each server running a task that multiplies submatrices
of input matrices. As straggling servers are inevitable in a
distributed infrastructure, various coding schemes, which deploy
coded tasks encoded from input matrices, have been proposed.
The overall result can then be decoded from a subset of such
coded tasks. However, as resources are shared with other jobs in
a distributed infrastructure and their performance can change
dynamically, the optimal way to encode the input matrices may
also change with time. So far, existing coding schemes for the
matrix multiplication all require splitting the input matrices and
encoding them in advance, and cannot change the coding schemes
or adjust their parameters after encoding. In this paper, we
propose a framework that can change the coding schemes and
their parameters, by only locally re-encoding each task on each
server. We demonstrate that the original tasks can be re-encoded
into new tasks only incurring marginal overhead.

I. INTRODUCTION

Matrix multiplication is an essential building block in various
machine learning algorithms. With the growing size of the
dataset, it is now common that the input matrices are too large
to calculate the multiplication on a single server. Therefore, it
becomes inevitable to run such algorithms on multiple servers
in a distributed infrastructure, e.g., in a cloud, where each server
executes a task multiplying two smaller matrices. However, it
is well known that servers in a distributed infrastructure can
experience temporary performance degradation, due to load
imbalance or resource congestion [1], [2], [3]. Therefore, when
distributing computation onto multiple servers, the progress of
the algorithm can be significantly affected by the tasks running
on such slow or failed servers, which we call stragglers.

In order to tolerate stragglers in the distributed matrix
multiplication, a naive method is to replicate each task on

multiple servers. For example, to multiply A =

[
A0

A1

]
with

B =
[
B0 B1

]
, i.e., AB =

[
A0B0 A0B1

A1B0 A1B1

]
, we can split

the job into four tasks AiBj , i ∈ [0, 1] and j ∈ [0, 1], and
replicate each of these four tasks on multiple servers. This
method, however, suffers from high resource consumption.
Only r stragglers can be tolerated when all tasks are replicated
r + 1 times. On the other hand, coding-based approaches for
the distributed matrix multiplication have been proposed to
tolerate stragglers more efficiently [2], [3], [4], [5], where
each server multiplies coded submatrices of A or/and B, e.g.,
(A1 +A2)(B1 +B2). Therefore, if we run this coded task with

the four original tasks, we can recover the four submatrices
in AB if any four of the five tasks are finished. Compared to
replicating each task on two servers, this coding scheme can
tolerate any single straggler with 75% fewer additional tasks.

Existing coding schemes for the matrix multiplication
include polynomial codes [6], MatDot codes [7], and entangled
polynomial codes [5]. These three coding schemes support to
split the input matrices differently and thus achieve different
recovery thresholds, i.e., the number of tasks required to recover
the overall result. Moreover, the two coded matrices in each task
must be encoded in advance before the multiplication. However,
the best coding scheme (and the values of its parameters) for
a job of the large-scale matrix multiplication usually depends
on the resources such as CPU and network bandwidth. For
example, if CPU is the bottleneck, it is desirable to split A and
B into more submatrices. On the other hand, if the network
bandwidth is limited, it becomes desirable to complete the
computation on fewer tasks. Unfortunately, the performances
of resources in a cloud are subject to change due to the shared
nature of resources in the cloud.

To demonstrate the impact of resources on the performance
of the distributed matrix multiplication, we run a job that
multiplies two matrices of sizes 4096×4096, in our local cluster.
The tasks in the job are encoded with a polynomial code, a
MatDot code, and an entangled polynomial code, respectively.
The job is implemented with Open MPI [8]. We calculate the
results of tasks on servers with the same hardware configuration,
called workers. Each worker uploads the result of each task to
another server called master. The number of workers in the
job is 5 more than the corresponding recovery threshold so
that at most 5 stragglers can be tolerated. When the number of
results received by the master reaches the recovery threshold,
the master will stop receiving any new result and decode such
results. Hence, the completion time of the job include the time
of executing tasks on workers, uploading the results to the
master, and decoding the results on the master.

In our experiment, we can observe how the performance of
the job, in terms of its completion time, changes with network
bandwidth. In order to change the network bandwidth, we
use iperf to send additional traffic at a fixed throughput of
3 Gbps from another server to the master, which competes
for the network bandwidth with all the workers. With the
additional traffic, the job will get less available bandwidth and
need more time to finish. However, as we run the same job
with different coding schemes, different coding schemes can
be affected differently with the loss of available bandwidth,
and we present two examples in Fig. 1.

with traffic without traffic0.5

1.0

1.5

2.0

2.5
tim

e
(s

ec
.)

(a) Polynomial vs. Entangled Polynomial

Polynomial
Entangled Polynomial

with traffic without traffic2

3

4

5

tim
e

(s
ec

.)

(b) MatDot vs. Entangled Polynomial

MatDot
Entangled Polynomial

Fig. 1: Comparisons of completion time of the coded distributed
matrix multiplication with and without additional traffic.

In Fig. 1a, we first compare the performance with a
polynomial code and an entangled polynomial code. With
the traffic described above, the entangled polynomial code
completes the job 11.1% slower than the polynomial code.
When such traffic is stopped, however, its time becomes 34.2%
faster. We can also observe the same overtaking in Fig. 1b,
between a MatDot code and an entangled polynomial code. The
time of the Matdot code is also originally 6.7% faster when
there is less available bandwidth, but becomes even 32.5%
slower when there is no such traffic.

From the examples above, we can see that the entangled
polynomial codes can be more affected by the available
bandwidth than the polynomial code and the MatDot code.
This is because the task encoded by the entangled polynomial
code has a lower complexity but the master also needs to
receive more data before decoding. Furthermore, the three
coding schemes also have different decoding complexities.
If the CPU is shared by another job on the master or a
worker, their completion time can also be affected differently.
As the resource availability is subject to frequent changes
in the cloud, it is challenging to choose the optimal coding
scheme and parameters in advance. If we need to change
the coding scheme, conventionally we can only encode tasks
again from scratch, consuming a significant amount of time
and network bandwidth to deploy the new coded matrices.
A similar problem was investigated for distributed storage
systems, where Maturana and Rashmi proposed convertible
codes which allow changing the parameters of MDS codes
with the optimal access cost [9], [10]. In this paper, we propose
a framework for distributed matrix multiplication that supports
changing the coding schemes and their parameters by only
locally re-encoding the coded matrices in each task, i.e., without
receiving any additional data.

We demonstrate that polynomial codes and MatDot codes
can be re-encoded into entangled polynomial codes and our
framework can also support a flexible change of their parame-
ters. In our experiments, we demonstrate that our framework
can change the parameters within only 0.026 seconds at most.

Compared to encoding tasks with updated parameters from
scratch, our framework can save the overall completion time
by up to 92.7%.

II. PRELIMINARY

Assume that the input matrices A and B can be horizontally
and vertically split into m and n submatrices, respectively. In

other words, A =

[
A0...

Am−1

]
and B =

[
B0 · · · Bn−1

]
. In this

case, a polynomial code can encode A and B into ÃP(m,n) =∑m−1
x=0 Axδ

nx and B̃P(m,n) =
∑n−1
y=0 Byδ

y, respectively.
Hence, ÃP(m,n)B̃P(m,n) =

∑m−1
x=0

∑n−1
y=0 AxByδ

nx+y is a
polynomial function of δ with a degree of mn−1, where AxBy ,
x ∈ [0,m−1], y ∈ [0, n−1], appears as the coefficient of each
term. Therefore, if we run tasks of ÃP(m,n)B̃P(m,n) with
different values of δ on multiple servers, we can recover all the
coefficients from the results of any mn tasks by interpolation
or Reed-Solomon decoding.

MatDot codes assume that A and B are split vertically
and horizontally into p submatrices, respectively. In other

words, A =
[
A0 · · · Ap−1

]
and B =

 B0...
Bp−1

. Then

AB =
∑p−1
l=0 AlBl. A MatDot code will encode A and B

as ÃMD(p) =
∑p−1
z=0 Azδ

z and B̃MD(p) =
∑p−1
z=0 Bp−1−zδ

z ,
respectively. Hence, ÃMD(p)B̃MD(p) is a polynomial function
of δ with a degree of 2p − 2, whose coefficients can be
decoded with any 2p − 1 tasks with different values of
δ. For example, if p = 2, ÃMD(2) = A0δ

0 + A1δ
1 and

B̃MD(2) = B1δ
0 + B0δ

1. Then their multiplication equals
A0B1δ

0 + (A0B0 + A1B1)δ1 + A1B0δ
2. If we observe the

coefficients, we can see that
∑p−1
l=0 AiBi appears as the

coefficient of δp−1. Therefore, the result of AB can be decoded
as one of the coefficient of ÃMD(p)B̃MD(p).

Now we assume that A and B are split into
m × p and p × n submatrices, respectively. In other

words, A =

 A0,0 · · · A0,p−1
...

. . .
...

Am−1,0 · · · Am−1,p−1

 , and B = B0,0 · · · B0,n−1
...

. . .
...

Bp−1,0 · · · Bp−1,n−1

 . With an entangled

polynomial code, each server runs a task
that calculates ÃEP(m,n, p)B̃EP(m,n, p), where
ÃEP(m,n, p) =

∑m−1
x=0

∑p−1
z=0 Ax,zδ

pnx+z , and
B̃EP(m,n, p) =

∑n−1
y=0

∑p−1
z=0 Bp−1−z,yδ

py+z . Hence,

ÃEP(m,n, p)B̃EP(m,n, p) =

m−1∑
x=0

n−1∑
y=0

2p−2∑
t=0

 min{p−1,t}∑
l=max{0,t−p+1}

Ax,lBp−1−t+l,y

δpnx+py+t.
As ÃEP(m,n, p)B̃EP(m,n, p) is a polynomial function of δ
whose degree is pmn+ p− 2, we can solve the coefficients of
δ with any pmn+ p− 1 tasks with different values of δ. In

particular, we can find that the coefficient of each term with
t = p− 1 is

∑p−1
l=0 Ax,lBl,y, 0 ≤ x ≤ m− 1, 0 ≤ y ≤ n− 1.

We can then obtain the mn submatrices in AB after decoding.

III. CODING FRAMEWORK

In this paper, we present a framework that allows not only
changing the coding schemes of a task with local re-encoding,
but also changing the values of their parameters. In fact, we
propose a framework that achieve the following property:

Theorem 1: A task encoded with an (m,n, p) entangled
polynomial code can be locally re-encoded into a task encoded
with a (λmm,λnn, λpp) entangled polynomial code, where
λm, λn, and λp are positive integers.

From this theorem, we can see that if a job is originally
encoded with an (m,n, p) entangled polynomial code, we
can further split and re-encode its ÃEP and B̃EP, such that
the new tasks are encoded with a (λmm,λnn, λpp) entangled
polynomial codes, without obtaining any additional data from
remote servers, leading to a marginal overhead of re-encoding.
Saving the complexity of each task by λmλnλp times by
increasing the recovery threshold to λmmλnnλpp+ λpp− 1,
our framework achieves a flexible tradeoff between computation
and communication overhead.

The change of coding schemes can also be supported by
this theorem. In fact, polynomial codes can be seen as a
special case of entangled polynomial codes with p = 1 and
MatDot codes can be seen as a special case of entangled
polynomial codes with m = n = 1. From Sec. II we
can easily verify that ÃP(m,n) = ÃEP(m,n, p = 1) and
ÃMD(p) = ÃEP(1, 1, p). The same equivalence can also be
found in B̃. Hence, as a special case, Theorem 1 allows
changing the coding schemes and also the parameters of a
polynomial code or MatDot code. For convenience, we may
omit EP in ÃEP(m,n, p) and B̃EP(m,n, p) in the rest of this
paper if there is no ambiguity, i.e., Ã(m,n, p) = ÃEP(m,n, p)
and B̃(m,n, p) = B̃EP(m,n, p). We present the detailed
framework in the rest of this section, which also proves
Theorem 1.

A. Changing p to λpp

We first show that a task with an (m,n, p) entan-
gled polynomial code can be locally re-encoded into a
task with an (m,n, λpp) entangled polynomial code. As-
sume that the two input matrices A and B can be di-

vided as A =

 A0,0 · · · A0,λpp−1...
. . .

...
Am−1,0 · · · Am−1,λpp−1

 , and B = B0,0 · · · B0,n−1...
. . .

...
Bλpp−1,0 · · · Bλpp−1,n−1

 . Although it is not necessary for

an (m,n, p) entangled polynomial code to split A vertically
and B horizontally into λpp partitions, it is required by
the (m,n, λpp) entangled polynomial code after re-encoding.

Therefore, the task encoded by the (m,n, p) entangled poly-
nomial code can be written as

Ã(m,n, p)

=

m−1∑
x=0

p−1∑
z=0

[
Ax,λpz · · · Ax,λpz+λp−1

]
δpnx+z

=

[
m−1∑
x=0

p−1∑
z=0
Ax,λpzδ

pnx+z · · ·
m−1∑
x=0

p−1∑
z=0
Ax,λpz+λp−1δ

pnx+z

]
,
[
Ã0(m,n, p) · · · Ãλp−1(m,n, p)

]
,

and

B̃(m,n, p) =

n−1∑
y=0

p−1∑
z=0

 B(p−1−z)λp,y

...
B(p−1−z)λp+λp−1,y

 δpy+z

=

n−1∑
y=0

p−1∑
z=0

B(p−1−z)λp,yδ
py+z

...
n−1∑
y=0

p−1∑
z=0

B(p−1−z)λp+λp−1,yδ
py+z

,

 B̃0(m,n, p)
...

B̃λp−1(m,n, p)

 .
First, we define δ = σλp . Then Ãl and B̃l can be

rewritten as Ãl(m,n, p) =
∑m−1
x=0

∑p−1
z=0 Ax,λpz+lσ

(pnx+z)λp ,
and B̃l(m,n, p) =

∑n−1
y=0

∑p−1
z=0 B(p−1−z)λp+l,yσ

(py+z)λp ,
l = 0, . . . , λp − 1.

We now re-encode Ã(m,n, p) and B̃(m,n, p) as

λp−1∑
l=0

Ãl(m,n, p)σ
l

=

λp−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Ax,λpz+lσ
(pnx+z)λp+l

=

m−1∑
x=0

λpp−1∑
z=0

Ax,zσ
λppnx+z = Ã(m,n, λpp),

and

λp−1∑
l=0

B̃λp−1−l(m,n, p)σ
l

=

λp−1∑
l=0

n−1∑
y=0

p−1∑
z=0

B(p−1−z)λp+λp−1−l,yσ
(py+z)λp+l

=

n−1∑
y=0

λpp−1∑
z=0

Bλpp−1−z,yσ
λppy+z = B̃(m,n, λpp).

B. Changing m to λmm

Now we show that a task with an (m,n, p) entangled
polynomial code can be locally re-encoded into a task with a

(λmm,n, p) entangled polynomial code. Assume that A can
be horizontally split into λmm partitions, i.e.,

A =

 A0,0 · · · A0,p−1
...

. . .
...

Aλmm−1,0 · · · Aλmm−1,p−1

 .
Hence, we have

Ã(m,n, p) =

m−1∑
x=0

p−1∑
z=0

 Aλmx,z...
Aλmx+λm−1,z

 δpnx+z

=

m−1∑
x=0

p−1∑
z=0

Aλmx,zδ
pnx+z

...m−1∑
x=0

p−1∑
z=0

Aλmx+λm−1,zδ
pnx+z

,
 Ã0(m,n, p)

...
Ãλm−1(m,n, p)

 .
Since B̃(m,n, p) is not a function of m, we need to re-

encode Ã(m,n, p) only when we adjust the value of m. When
m is changed to λmm, we will re-encode Ã(m,n, p) as

λm−1∑
l=0

Ãl(m,n, p)δ
lpmn

=

λm−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Aλmx+l,zδ
pnx+z+lpmn

=

λm−1∑
l=0

m−1∑
x=0

p−1∑
z=0

Aλmx+l,zδ
pn(lm+x)+z = Ã′(λmm,n, p).

Here, after re-encoding, we generate Ã′(λmm,n, p) which
is encoded by a (λmm,n, p) entangled polynomial code from
a matrix A′ with rows in A switched:

A′ =

A0,0 · · · A0,p−1
Aλm,0 · · · Aλm,p−1...

...
...

Aλm(m−1),0 · · · Aλm(m−1),p−1

A1,0 · · · A1,p−1
...

...
...

Aλm(m−1)+1,0 · · · Aλm(m−1)+1,p−1

...
...

...

Aλm−1,0 · · · Aλ1,p−1...
...

...
Aλm(m−1)+λm−1,0 · · · Aλm(m−1)+λm−1,p−1

.

Although the sequence of rows in A is switched, it will not
change the result after decoding, since the sequence of rows
in AB can be switched back in the same way.

C. Changing n to λnn

Similarly, we also assume that B can be vertically split into
λnn partitions, i.e.,

B =

 B0,0 · · · B0,λnn−1...
. . .

...
Bp−1,0 · · · Bp−1,λnn−1

 .

The matrix B can then be encoded by an (m,n, p) entangled
polynomial code as follows:

B̃(m,n, p)

=

n−1∑
y=0

p−1∑
z=0

[
Bp−1−z,λny · · · Bp−1−z,λny+λn−1

]
δpy+z

=

[
n−1∑
y=0

p−1∑
z=0

Bp−1−z,λnyδ
py+z · · ·

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+λn−1δ
py+z

]
,
[
B̃0(m,n, p) · · · B̃λn−1(m,n, p)

]
.

When we change n to λnn, we also need to re-
encode B̃(m,n, p) only as

∑λn−1
l=0 B̃l(m,n, p)δ

lpmn =∑λn−1
l=0

∑n−1
y=0

∑p−1
z=0Bp−1−z,λny+lδ

py+z+lpmn.
Although it cannot be directly written as B̃(m,λnn, p),

we show that it is equivalent as an (m,λnn, p) entangled
polynomial code, as they achieve the same recovery threshold.
Since

Ã(m,n, p) ·

(
λn−1∑
l=0

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+lδ
py+z+lpmn

)

=

(
m−1∑
x=0

p−1∑
z=0

Ax,zδ
pnx+z

)
·(

λn−1∑
l=0

n−1∑
y=0

p−1∑
z=0

Bp−1−z,λny+lδ
py+z+lpmn

)

=

m−1∑
x=0

λn−1∑
l=0

n−1∑
y=0

2p−2∑
s=0

min{p−1,s}∑
z=max{0,s−p+1}

(
Ax,z·

Bp−1−z,λny+lδ
pmnl+pnx+py+s

)
,

the degree of the polynomial above is pmn(λn−1) +pn(m−
1)+p(n−1)+2p−2 = pmλnn+p−2, the same as that of an
(m,λnn, p) entangled polynomial code. When s = p− 1, we

can get the submatrices in AB, i.e.,
p−1∑
z=0

Ax,zBp−1−z,λny+l.

D. Changing (m,n, p) to (λmm,λnn, λpp)

When we need to change the values of m, n, and p at
the same time, we can simply apply the three steps above
individually. We note that when λm 6= 1 or λn 6= 1, we will
not construct the exact Ã(m,n, p) or B̃(m,n, p). Rows in
A are virtually shuffled when λm 6= 1. If λn 6= 1, neither
Ã(m,λnn, p) nor B̃(m,λnn, p) is constructed exactly but
they can maintain the recovery threshold of the corresponding
entangled polynomial code. Therefore, we will first change p
to λpp, then m to λmm, and finally n to λnn.

Assume that each task is originally encoded with an (m,n, p)
entangled polynomial code. If A and B are of size Λmm ×
Λpp and Λpp × Λnn, then each task can be re-encoded into
any (λmm,λnn, λpp) entangled polynomial code, if λm|Λm,
λn|Λn, and λp|Λp. The more divisors Λm, Λn, and Λp have,
the more entangled polynomial codes we can re-encode to.

Polynomial (m=2,n=2) ->
Entangled Polynomial (m=2,n=4,p=2)

MatDot (p=2) ->
Entangled Polynomial (m=2,n=1,p=4)

0

2

4

6

8

tim
e

(s
ec

.)
global
local

Fig. 2: Job completion time with re-encoding in the cluster.

Even if λm/λn/λp is not a divisor of Λm/Λn/Λp, we can still
add all-zero additional rows or columns into Ã or/and B̃ so
that they are divisible without affecting the overall result.

IV. EVALUATION

We implement our framework with Open MPI based on the
experiment in Sec. I. Before a worker executes the task, if the
task needs to be re-encoded, the worker will first re-encode
its Ã and B̃, then multiply the two re-encoded matrices, and
finally upload the result to the master. In other words, the
completion time will also include the time of re-encoding. As
for conventional framework (denoted by global), to change
the coding scheme, we need to encode all tasks again from
scratch, deploy such tasks to workers, and then start the job.
Hence, the time of re-encoding should include these three steps
in global. The proposed local framework, on the other
hand, allows re-encoding tasks into a new coding scheme on
local directly.

We first present the results of running local re-encoding
in our local cluster, with the same job and the same coding
schemes in Sec. I. We still add 5 additional workers to tolerate
at most 5 stragglers. In Fig. 2, we demonstrate the time of
changing the coding schemes with the two schemes global
and local. We repeat each configuration 50 times and show
the average time. From Fig. 2, we can see that the time with
local can be saved by 84.9% and 62.8%, respectively. The
saving of time mainly comes from the saving of the time for
encoding and deploying tasks with the new coding schemes,
which can also be validated from the results running in Amazon
EC2 below. Furthermore, if we compare the completion time
of the job with the original coding schemes in Fig. 1, we can
see that it can be saved by 14.3% and 18.5%, respectively.

In Amazon EC2, we run the master on a virtual machine
of type t2.xlarge and all workers on virtual machines of
type t2.small. We set initial values of (m,n, p) as (2, 2, 2),
and encode input matrices of three jobs. The sizes of input
matrices of such three jobs are shown in Fig. 3. In each job, we
change the parameters with four configurations of (λm, λn, λp):
(4, 1, 1), (1, 8, 1), (1, 1, 4), and (2, 2, 2). In other words, we
change the value of only one parameter in the first three
configurations and change the values of all parameters in the
last configuration.

We first compare the overhead of re-encoding in Fig. 4. With
each configuration, we also repeat each job 50 times and obtain
the mean and standard deviation of its results. As for local,

Job 1 Job 2 Job 3
A 1024× 2048 2048× 2048 2048× 1024
B 2048× 4096 2048× 2048 1024× 2048

Fig. 3: Sizes of input matrices in the three jobs.

Job 1 Job 2 Job 30.00

0.01

0.02

0.03

tim
e

(s
ec

.)

(a) local

(4, 1, 1)
(1, 8, 1)
(1, 1, 4)
(2, 2, 2)

Job 1 Job 2 Job 30.0

2.5

5.0

7.5

10.0

12.5

tim
e

(s
ec

.)

(b) global

(4, 1, 1)
(1, 8, 1)
(1, 1, 4)
(2, 2, 2)

Fig. 4: Overhead of re-encoding with different values of
(λm, λn, λp).

the overhead of re-encoding comes only from re-encoding Ã
and B̃ locally. The overhead of global, however, comprises
encoding which is performed solely at the master, and the
overhead of distributing all coded tasks. Therefore, although
originally the time of the re-encoding of global is between
1.79 seconds and 10.79 seconds, the re-encoding of local
only needs 0.026 seconds on average at most.

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(λm, λn, λp)

0

5

10

15

tim
e

(s
ec

.)

(a) Job 1

global
local

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(λm, λn, λp)

0

5

10

15

tim
e

(s
ec

.)

(b) Job 2

global
local

(4,1,1) (1,8,1) (1,1,4) (2,2,2)
(λm, λn, λp)

0

2

4

6

8

10

tim
e

(s
ec

.)

(c) Job 3

global
local

Fig. 5: Job completion time with re-encoding in Amazon EC2.

Compared to the job completion time in Fig. 5, we can see
that the re-encoding overhead of local in Fig. 4a is marginal.
We also compare its job completion time with that of global.
Due to the saved re-encoding overhead, we can observe that
the job completion time can also be saved by up to 92.7%.

V. CONCLUSION

Although the coded matrix multiplication has been demon-
strated to tolerate stragglers, existing coding techniques cannot
flexibly adjust the coding schemes or even the values of
their parameters according to the change of resources in
the distributed infrastructure. The proposed framework can
change the coding schemes among representative coding
schemes, as well as their parameters, for the distributed matrix
multiplication without incurring additional traffic, and thus
significantly save the time and communication overhead to
complete the matrix multiplication with dynamic resources.

ACKNOWLEDGEMENTS

This paper is based upon work supported by the National
Science Foundation (CCF-1910447), AWS Cloud Credits for
Research, and the Science and Technology Project of the
Department of Education of Jiangxi Province, China (170384).

REFERENCES

[1] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,” in
USENIX Conference on Hot Topics in Operating Systems (HotOS), 2017.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2018.

[3] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in International
Conference on Machine Learning (ICML), 2017, pp. 3368–3376.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” in
Advances in Neural Information Processing Systems, 2016, pp. 2100–
2108.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler Mitigation
in Distributed Matrix Multiplication: Fundamental Limits and Optimal
Coding,” in IEEE International Symposium on Information Theory (ISIT),
2018, pp. 2022–2026.

[6] ——, “Polynomial Codes: an Optimal Design for High-Dimensional
Coded Matrix Multiplication,” Advances in Neural Information Process-
ing Systems (NIPS), 2017.

[7] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe,
and P. Grover, “On the Optimal Recovery Threshold of Coded
Matrix Multiplication,” Tech. Rep., 2018. [Online]. Available:
https://arxiv.org/pdf/1801.10292.pdf

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain,
D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation,” in
11th European PVM/MPI Users’ Group Meeting, 2004, pp. 97–104.

[9] F. Maturana and K. V. Rashmi, “Convertible Codes: New Class of Codes
for Efficient Conversion of Coded Data in Distributed Storage,” in 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 151,
2020, pp. 66:1–66:26.

[10] F. Maturana, C. Mukka, and K. V. Rashmi, “Access-optimal Linear MDS
Convertible Codes for All Parameters,” in IEEE International Symposium
on Information Theory (ISIT 2020), 2020.

https://arxiv.org/pdf/1801.10292.pdf

	Introduction
	Preliminary
	Coding Framework
	Changing p to p p
	Changing m to mm
	Changing n to nn
	Changing (m,n,p) to (mm,nn,pp)

	Evaluation
	Conclusion
	References

