
Dual Entangled Polynomial Code: Three-Dimensional Coding
for Distributed Matrix Multiplication

Pedro Soto 1 Jun Li 1 Xiaodi Fan 1

Abstract
Matrix multiplication is a fundamental building
block in various machine learning algorithms.
When the matrix comes from a large dataset, the
multiplication can be split into multiple tasks
which calculate the multiplication of submatri-
ces on different nodes. As some nodes may be
stragglers, coding schemes have been proposed to
tolerate stragglers in such distributed matrix multi-
plication. However, existing coding schemes typi-
cally split the matrices in only one or two dimen-
sions, limiting their capabilities to handle large-
scale matrix multiplication. Three-dimensional
coding, however, does not have any code construc-
tion that achieves the optimal number of tasks re-
quired for decoding, with the best result achieved
by entangled polynomial (EP) codes. In this pa-
per, we propose dual entangled polynomial (DEP)
codes that require around 25% fewer tasks than
EP codes by executing two matrix multiplications
on each task. With experiments in a real cloud en-
vironment, we show that DEP codes can also save
the decoding overhead and memory consumption
of tasks.

1. Introduction
Modern machine learning algorithms play a critical role in
various cognitive problems such as computer vision, nat-
ural language processing, robotics, etc. To achieve high
performance when running a machine learning algorithm
whose input is a large dataset, it is common to run such
algorithms on large-scale distributed infrastructure, e.g., in
the cloud. By dividing a job of a machine learning algorithm
into multiple tasks, modern distributed computing frame-
works, such as MapReduce (Had, 2018) and Spark (Zaharia

1School of Computing and Information Sciences, Florida Inter-
national University, Miami, Florida, USA. Correspondence to: Jun
Li <junli@cs.fiu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

et al., 2010), have been able to process a high volume of
data at the scale of tens of terabytes or more, on a cluster
of nodes with limited power of CPU and memory space.
Matrix multiplication, for example, is a fundamental and
pervasive operation in many machine learning algorithms,
which can be split into multiple tasks where each task calcu-
lates a submatrix of the result.

However, it is well known that nodes in a distributed in-
frastructure are subject to various faulty behaviors. For
example, nodes may experience temporary performance
degradation (Huang et al., 2017) due to resource contention
or load imbalance, and we call such nodes stragglers. For ex-
ample, it can be observed that virtual machines on Amazon
EC2 may be 5× slower than others of the same type (Tan-
don et al., 2017). Therefore, the performance of distributed
matrix multiplication may not necessarily be improved by
simply scaling out the job to more nodes, as the overall
progress is more likely to be affected by unavailable or
straggling nodes (Lee et al., 2018).

master

worker 1 worker 2 worker 5

(c) 2D coding

worker 3 worker 4

	Ӷφ�Ӷϵ
	ӷφ�ӷϵ

<latexit sha1_base64="znWf08YVWC8Of+VcZEHYp1xBGTM=">AAADrniclVLLjtMwFPU0PIbwmoElm4gOUhFMlZQFbCrNdDazAFTQtFOpiSrHuWms2k6I7YEo6gfwNWzhU/gb7EwWtB0WWLJ0fO+518fXJy4Ylcr3f+91nFu379zdv+fef/Dw0eODwydTmeuSwITkLC9nMZbAqICJoorBrCgB85jBZbw6s/nLKyglzcWFqgqIOF4KmlKClQktDrohh4RruaLF0OfaPeqdLoJXp4vBy97IgJEBR4bl9/1mebsgaEEXtWu8OOzIMMmJ5iAUYVjKeeAXKqpxqShhsHZDLaHAZIWXMDdQYA4yqpvXrL0XJpJ4aV6aLZTXRP+uqDGXsuKxYXKsMrmds8GbcnOt0ndRTUWhFQhyfVGqmadyz47GS2gJRLHKAExKarR6JMMlJsoM0A0/wxdtGOO2mzmAeZPVKAsg6x2CFXAsVcVgeAGzqNaCkjyB40af64YCvtriFHPKqjDOk8oe51F9DuwKzO3Y+wgavPd0man1Nl9lVPwPPwOcULG8ueQsFwkIO/ZRzhIrLoEUa6aaBoCVLkHWH3BRmBZDBd+OzbZ3SFAct0K206+9xn72rJpP/JfSjQ+0njdd5IZJWmts/jRbFhK08ZkZqmniGpsG26bcBdNBP3jTH3wadE9GrWH30TP0HPVQgN6iE3SOxmiCCPqOfqCf6JfjO1MnchbX1M5eW/MUbSwn+wN8ijdQ</latexit>

master

worker 1 worker 2 worker 3 worker 4

Ӷφӷ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷφӷ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷϵӷ
<latexit sha1_base64="fAYgpJ3i+YudMFT/hBwj2htxgKc=">AAADjXiclVJLbxMxEHazPMryaAvixMWiQuJAqqRSBQeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1UkfgDiCvw0/g32JgeSlAMjWZr3fJ754kIKg53O741WcO36jZubt8Lbd+7e29reuX9mtC05DLiWuhzGzIAUCgYoUMKwKIHlsYTz+OLYx88voTRCq1OsCohyNlUiFZyhd72e7Pcm27udvU4jdF3pLpTdo4e/vn0lhPQnOy0zTjS3OSjkkhkz6nYKjGpWouASZuHYGigYv2BTGDlVsRxMVDdgZ/SJ8yQ01aV7Cmnj/buiZrkxVR67zJxhZlZj3nlVbGQxfRHVQhUWQfH5oNRKipr6n9NElMBRVk5hvBQOK+UZKxlHt59w/BE+WZfRX3RzBrg/eYymAD5bS/AA2gYrCYenMIxqqwTXCbQbfGE4VvDZF6csF7IaxzqpvDmK6hOQl+CmM/oeLNC3YprhbDUfM6H+Jz8Dlgg1vbrkWKsElF97T8vEg0sgZVZi0wAY2hJM/Y4VhWtxiPCl7Z6fYQBztgCyGn5GG3Z5G5sj/gvp0gE9pV0Xs0SSBTWWLy2nhQHreOaW6pqEjqbdVVKuK2f7e12nf3B87ZG5bJJH5DF5SrrkOTkiJ6RPBoSTjHwnP8jPYCs4CF4Gr+aprY1FzQOyJMGbPwQsLuU=</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="ckhOgd6rZY5OaGg4GDwpzab+IsM=">AAADjXiclVJLb9NAEN7GPIp5tIUjF4sIiQOpnEoVHCgq6YEeAAXUtJESK1qvx/aq613jnS1YVv4CV/hr/Bt2XR9IUg6MtNK859uZLy4F1xiGv7d63q3bd+5u3/PvP3j4aGd37/G5VqZiMGFKqGoaUw2CS5ggRwHTsgJaxAIu4ssTF7+4gkpzJc+wLiEqaCZ5yhlF53q3OBgtdvvhfthKsKkMO6VPOhkv9np6nihmCpDIBNV6NgxLjBpaIWcClv7caCgpu6QZzKwqaQE6alqwy+C59SRBqir7JAat9++KhhZa10VsMwuKuV6POedNsZnB9HXUcFkaBMmuB6VGBKgC9/Mg4RUwFLVVKKu4xRqwnFaUod2PP/8CX43NGHfdrAH2Tw6jLoEtNxIcgIHGWsDRGUyjxkjOVAKDFp/vzyV8c8UpLbio57FKamfOouYUxBXY6TT4BAaCDzzLcbmejzmX/5OfA024zG4uOVEyAenWPlIiceASSKkR2DYAiqYC3XykZWlbHCF8H9jnZmjAgnZA1sMvg5Zdzsb2iP9CunJAR2nbRa+QpKPG6qVFVmowlmd2qbaJb2k6XCflpnJ+sD+0+uewfzzqCLtNnpJn5AUZklfkmJySMZkQRnLyg/wkv7wd79B74729Tu1tdTVPyIp47/8AHrEs6w==</latexit>

Ӷϵӷ
<latexit sha1_base64="fAYgpJ3i+YudMFT/hBwj2htxgKc=">AAADjXiclVJLbxMxEHazPMryaAvixMWiQuJAqqRSBQeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1UkfgDiCvw0/g32JgeSlAMjWZr3fJ754kIKg53O741WcO36jZubt8Lbd+7e29reuX9mtC05DLiWuhzGzIAUCgYoUMKwKIHlsYTz+OLYx88voTRCq1OsCohyNlUiFZyhd72e7Pcm27udvU4jdF3pLpTdo4e/vn0lhPQnOy0zTjS3OSjkkhkz6nYKjGpWouASZuHYGigYv2BTGDlVsRxMVDdgZ/SJ8yQ01aV7Cmnj/buiZrkxVR67zJxhZlZj3nlVbGQxfRHVQhUWQfH5oNRKipr6n9NElMBRVk5hvBQOK+UZKxlHt59w/BE+WZfRX3RzBrg/eYymAD5bS/AA2gYrCYenMIxqqwTXCbQbfGE4VvDZF6csF7IaxzqpvDmK6hOQl+CmM/oeLNC3YprhbDUfM6H+Jz8Dlgg1vbrkWKsElF97T8vEg0sgZVZi0wAY2hJM/Y4VhWtxiPCl7Z6fYQBztgCyGn5GG3Z5G5sj/gvp0gE9pV0Xs0SSBTWWLy2nhQHreOaW6pqEjqbdVVKuK2f7e12nf3B87ZG5bJJH5DF5SrrkOTkiJ6RPBoSTjHwnP8jPYCs4CF4Gr+aprY1FzQOyJMGbPwQsLuU=</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="ckhOgd6rZY5OaGg4GDwpzab+IsM=">AAADjXiclVJLb9NAEN7GPIp5tIUjF4sIiQOpnEoVHCgq6YEeAAXUtJESK1qvx/aq613jnS1YVv4CV/hr/Bt2XR9IUg6MtNK859uZLy4F1xiGv7d63q3bd+5u3/PvP3j4aGd37/G5VqZiMGFKqGoaUw2CS5ggRwHTsgJaxAIu4ssTF7+4gkpzJc+wLiEqaCZ5yhlF53q3OBgtdvvhfthKsKkMO6VPOhkv9np6nihmCpDIBNV6NgxLjBpaIWcClv7caCgpu6QZzKwqaQE6alqwy+C59SRBqir7JAat9++KhhZa10VsMwuKuV6POedNsZnB9HXUcFkaBMmuB6VGBKgC9/Mg4RUwFLVVKKu4xRqwnFaUod2PP/8CX43NGHfdrAH2Tw6jLoEtNxIcgIHGWsDRGUyjxkjOVAKDFp/vzyV8c8UpLbio57FKamfOouYUxBXY6TT4BAaCDzzLcbmejzmX/5OfA024zG4uOVEyAenWPlIiceASSKkR2DYAiqYC3XykZWlbHCF8H9jnZmjAgnZA1sMvg5Zdzsb2iP9CunJAR2nbRa+QpKPG6qVFVmowlmd2qbaJb2k6XCflpnJ+sD+0+uewfzzqCLtNnpJn5AUZklfkmJySMZkQRnLyg/wkv7wd79B74729Tu1tdTVPyIp47/8AHrEs6w==</latexit>

(a) replication

master

worker 1 worker 2 worker 3

Ӷφӷ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷϵӷ
<latexit sha1_base64="fAYgpJ3i+YudMFT/hBwj2htxgKc=">AAADjXiclVJLbxMxEHazPMryaAvixMWiQuJAqqRSBQeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1UkfgDiCvw0/g32JgeSlAMjWZr3fJ754kIKg53O741WcO36jZubt8Lbd+7e29reuX9mtC05DLiWuhzGzIAUCgYoUMKwKIHlsYTz+OLYx88voTRCq1OsCohyNlUiFZyhd72e7Pcm27udvU4jdF3pLpTdo4e/vn0lhPQnOy0zTjS3OSjkkhkz6nYKjGpWouASZuHYGigYv2BTGDlVsRxMVDdgZ/SJ8yQ01aV7Cmnj/buiZrkxVR67zJxhZlZj3nlVbGQxfRHVQhUWQfH5oNRKipr6n9NElMBRVk5hvBQOK+UZKxlHt59w/BE+WZfRX3RzBrg/eYymAD5bS/AA2gYrCYenMIxqqwTXCbQbfGE4VvDZF6csF7IaxzqpvDmK6hOQl+CmM/oeLNC3YprhbDUfM6H+Jz8Dlgg1vbrkWKsElF97T8vEg0sgZVZi0wAY2hJM/Y4VhWtxiPCl7Z6fYQBztgCyGn5GG3Z5G5sj/gvp0gE9pV0Xs0SSBTWWLy2nhQHreOaW6pqEjqbdVVKuK2f7e12nf3B87ZG5bJJH5DF5SrrkOTkiJ6RPBoSTjHwnP8jPYCs4CF4Gr+aprY1FzQOyJMGbPwQsLuU=</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="Ig9SX8KxVvRHj7aSL9wBnyMT1U8=">AAADjXiclVLNbhMxEHa7/JQt0BbEiYtFQeqBVEklBAeKSnqgB0ABNW2kZBV5vbNZq157WY8Lq1V4AsQVeDTeBnuTA0nKgZEszf98nvniQgqD7fbvtfXg2vUbNzduhZu379zd2t65d2a0LTn0uZa6HMTMgBQK+ihQwqAogeWxhPP44tjHzy+hNEKrU6wKiHI2USIVnKF3vR4fdMfbu+39diN0VenMld2jB7++fd17vNkb76ybUaK5zUEhl8yYYaddYFSzEgWXMA1H1kDB+AWbwNCpiuVgoroBO6VPnCehqS7dU0gb798VNcuNqfLYZeYMM7Mc886rYkOL6YuoFqqwCIrPBqVWUtTU/5wmogSOsnIK46VwWCnPWMk4uv2Eo4/wybqM3rybM8D9yWM0BfDpSoIH0DJYSTg8hUFUWyW4TqDV4AvDkYLPvjhluZDVKNZJ5c1hVJ+AvAQ3ndH3YIG+FZMMp8v5mAn1P/kZsESoydUlx1oloPzau1omHlwCKbMSmwbA0JZg6nesKFyLQ4QvLff8DAOYszmQ5fBT2rDL29gc8V9IFw7oKe26mAWSzKmxeGk5KQxYxzO3VNckdDTtLJNyVTk72O84/YPja5fMZIM8JI/IHumQ5+SInJAe6RNOMvKd/CA/g63gWfAyeDVLXV+b19wnCxK8+QMArC86</latexit><latexit sha1_base64="ckhOgd6rZY5OaGg4GDwpzab+IsM=">AAADjXiclVJLb9NAEN7GPIp5tIUjF4sIiQOpnEoVHCgq6YEeAAXUtJESK1qvx/aq613jnS1YVv4CV/hr/Bt2XR9IUg6MtNK859uZLy4F1xiGv7d63q3bd+5u3/PvP3j4aGd37/G5VqZiMGFKqGoaUw2CS5ggRwHTsgJaxAIu4ssTF7+4gkpzJc+wLiEqaCZ5yhlF53q3OBgtdvvhfthKsKkMO6VPOhkv9np6nihmCpDIBNV6NgxLjBpaIWcClv7caCgpu6QZzKwqaQE6alqwy+C59SRBqir7JAat9++KhhZa10VsMwuKuV6POedNsZnB9HXUcFkaBMmuB6VGBKgC9/Mg4RUwFLVVKKu4xRqwnFaUod2PP/8CX43NGHfdrAH2Tw6jLoEtNxIcgIHGWsDRGUyjxkjOVAKDFp/vzyV8c8UpLbio57FKamfOouYUxBXY6TT4BAaCDzzLcbmejzmX/5OfA024zG4uOVEyAenWPlIiceASSKkR2DYAiqYC3XykZWlbHCF8H9jnZmjAgnZA1sMvg5Zdzsb2iP9CunJAR2nbRa+QpKPG6qVFVmowlmd2qbaJb2k6XCflpnJ+sD+0+uewfzzqCLtNnpJn5AUZklfkmJySMZkQRnLyg/wkv7wd79B74729Tu1tdTVPyIp47/8AHrEs6w==</latexit>

(b) 1D coding

	Ӷφ�Ӷϵ
ӷ
<latexit sha1_base64="tlcuIHPReTPIf3/I/g9ZTnfb0t0=">AAADpniclVJLb9NAEN7GPIp5pXDsxSJFCoJUdi5widSmlx6gCqhpIsVWWK/HySq7a+PdLVhWDvwarvBz+Dfsuj6QpBwYaaV5z7czX5wzKpXv/95rOXfu3ru//8B9+Ojxk6ftg2dXMtMFgTHJWFZMYyyBUQFjRRWDaV4A5jGDSbw6s/HJNRSSZuJSlTlEHC8ETSnByrjm7cOQQ8K1XNF84HPtHnVP58Hr03n/1fBo3u74x34t3q4SNEoHNTKaH7RkmGREcxCKMCzlLPBzFVW4UJQwWLuhlpBjssILmBlVYA4yqupfrL2XxpN4aVaYJ5RXe/+uqDCXsuSxyeRYLeV2zDpvi820St9FFRW5ViDIzaBUM09lnl2Jl9ACiGKlUTApqMHqkSUuMFFmcW74Cb5okzFquhkDzJ8sRpkDWe8kWAA9qUoGg0uYRpUWlGQJ9Gp8rhsK+GqLU8wpK8M4S0przqLqHNg1mOnYuwAN3nu6WKr1dr5aUvE/+UvACRWL20vOMpGAsGsfZiyx4BJIsWaqbgBY6QJk9QHnuWkxUPCtZ56dIUFx3ADZDr/xatpZW9VH/BfSjQNarpsucoMkDTU2L80WuQRteGaWapq4hqbBNil3lav+cWD0j/3OybAh7D46RC9QFwXoLTpB52iExoig7+gH+ol+OV3nwhk7k5vU1l5T8xxtiPP5DxcFNR0=</latexit><latexit sha1_base64="tlcuIHPReTPIf3/I/g9ZTnfb0t0=">AAADpniclVJLb9NAEN7GPIp5pXDsxSJFCoJUdi5widSmlx6gCqhpIsVWWK/HySq7a+PdLVhWDvwarvBz+Dfsuj6QpBwYaaV5z7czX5wzKpXv/95rOXfu3ru//8B9+Ojxk6ftg2dXMtMFgTHJWFZMYyyBUQFjRRWDaV4A5jGDSbw6s/HJNRSSZuJSlTlEHC8ETSnByrjm7cOQQ8K1XNF84HPtHnVP58Hr03n/1fBo3u74x34t3q4SNEoHNTKaH7RkmGREcxCKMCzlLPBzFVW4UJQwWLuhlpBjssILmBlVYA4yqupfrL2XxpN4aVaYJ5RXe/+uqDCXsuSxyeRYLeV2zDpvi820St9FFRW5ViDIzaBUM09lnl2Jl9ACiGKlUTApqMHqkSUuMFFmcW74Cb5okzFquhkDzJ8sRpkDWe8kWAA9qUoGg0uYRpUWlGQJ9Gp8rhsK+GqLU8wpK8M4S0przqLqHNg1mOnYuwAN3nu6WKr1dr5aUvE/+UvACRWL20vOMpGAsGsfZiyx4BJIsWaqbgBY6QJk9QHnuWkxUPCtZ56dIUFx3ADZDr/xatpZW9VH/BfSjQNarpsucoMkDTU2L80WuQRteGaWapq4hqbBNil3lav+cWD0j/3OybAh7D46RC9QFwXoLTpB52iExoig7+gH+ol+OV3nwhk7k5vU1l5T8xxtiPP5DxcFNR0=</latexit><latexit sha1_base64="tlcuIHPReTPIf3/I/g9ZTnfb0t0=">AAADpniclVJLb9NAEN7GPIp5pXDsxSJFCoJUdi5widSmlx6gCqhpIsVWWK/HySq7a+PdLVhWDvwarvBz+Dfsuj6QpBwYaaV5z7czX5wzKpXv/95rOXfu3ru//8B9+Ojxk6ftg2dXMtMFgTHJWFZMYyyBUQFjRRWDaV4A5jGDSbw6s/HJNRSSZuJSlTlEHC8ETSnByrjm7cOQQ8K1XNF84HPtHnVP58Hr03n/1fBo3u74x34t3q4SNEoHNTKaH7RkmGREcxCKMCzlLPBzFVW4UJQwWLuhlpBjssILmBlVYA4yqupfrL2XxpN4aVaYJ5RXe/+uqDCXsuSxyeRYLeV2zDpvi820St9FFRW5ViDIzaBUM09lnl2Jl9ACiGKlUTApqMHqkSUuMFFmcW74Cb5okzFquhkDzJ8sRpkDWe8kWAA9qUoGg0uYRpUWlGQJ9Gp8rhsK+GqLU8wpK8M4S0przqLqHNg1mOnYuwAN3nu6WKr1dr5aUvE/+UvACRWL20vOMpGAsGsfZiyx4BJIsWaqbgBY6QJk9QHnuWkxUPCtZ56dIUFx3ADZDr/xatpZW9VH/BfSjQNarpsucoMkDTU2L80WuQRteGaWapq4hqbBNil3lav+cWD0j/3OybAh7D46RC9QFwXoLTpB52iExoig7+gH+ol+OV3nwhk7k5vU1l5T8xxtiPP5DxcFNR0=</latexit><latexit sha1_base64="tlcuIHPReTPIf3/I/g9ZTnfb0t0=">AAADpniclVJLb9NAEN7GPIp5pXDsxSJFCoJUdi5widSmlx6gCqhpIsVWWK/HySq7a+PdLVhWDvwarvBz+Dfsuj6QpBwYaaV5z7czX5wzKpXv/95rOXfu3ru//8B9+Ojxk6ftg2dXMtMFgTHJWFZMYyyBUQFjRRWDaV4A5jGDSbw6s/HJNRSSZuJSlTlEHC8ETSnByrjm7cOQQ8K1XNF84HPtHnVP58Hr03n/1fBo3u74x34t3q4SNEoHNTKaH7RkmGREcxCKMCzlLPBzFVW4UJQwWLuhlpBjssILmBlVYA4yqupfrL2XxpN4aVaYJ5RXe/+uqDCXsuSxyeRYLeV2zDpvi820St9FFRW5ViDIzaBUM09lnl2Jl9ACiGKlUTApqMHqkSUuMFFmcW74Cb5okzFquhkDzJ8sRpkDWe8kWAA9qUoGg0uYRpUWlGQJ9Gp8rhsK+GqLU8wpK8M4S0przqLqHNg1mOnYuwAN3nu6WKr1dr5aUvE/+UvACRWL20vOMpGAsGsfZiyx4BJIsWaqbgBY6QJk9QHnuWkxUPCtZ56dIUFx3ADZDr/xatpZW9VH/BfSjQNarpsucoMkDTU2L80WuQRteGaWapq4hqbBNil3lav+cWD0j/3OybAh7D46RC9QFwXoLTpB52iExoig7+gH+ol+OV3nwhk7k5vU1l5T8xxtiPP5DxcFNR0=</latexit>

Ӷφӷφ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷφӷϵ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷϵӷϵ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ӷϵӷφ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1: Examples of distributed matrix multiplication with
replication, 1D coding and 2D coding.

A naive method to tolerate stragglers in distributed matrix
multiplication is adding replicated tasks. Fig. 1a shows an
example where the multiplication of AB is split into two
tasks A1B and A2B and the two tasks are replicated on two
nodes, respectively. Therefore, we can disregard the result
of any single node when it becomes a straggler. This method,

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

however, suffers from high resource overhead. In order to
tolerate any r stragglers, each task must be replicated on
r+1 nodes. Therefore, Lee et al. (Lee et al., 2018) proposed
the first coding scheme for distributed matrix multiplication.
As show in Fig. 1b, only one additional task (A1 +A2)B is
needed, and we can still disregard the result of any single
straggler.

The problem of the code in Fig. 1b is that it can only work
well when the size ofB is small. When the size ofB is large,
the overhead to compute AiB may still be infeasible to be
executed on an individual node. In order to solve this prob-
lem, Yu et al. (Yu et al., 2017) proposed polynomial codes,
which allow both A and B to be split. Fig. 1c illustrates an
example of polynomial codes where A is split horizontally
into A1 and A2, and B is split vertically into B1 and B2.
The multiplication ofAB can then be split from such two di-
mensions into four tasksAiBj , i ∈ {1, 2}, j ∈ {1, 2}. Poly-
nomial codes encode the four tasks and generate coded tasks
such as (A1 +A2)(B1 +B2). In this way, we can see that
the resource requirement of each task is reduced to 1

4 of the
job, and we can also tolerate any single straggler among the
five nodes, as (A1 + A2)(B1 +B2) =

∑2
i=1

∑2
j=1AiBj .

Its number of tasks required to recover the result of the job
is also proved to be optimal (Yu et al., 2017).

Polynomial codes can reduce the workload of tasks if the
number of A’s rows or the number of B’s columns is large.
However, when the number of A’s columns (or equivalently
the number of B’s rows) is large, dividing the two matrices
in two dimensions may still not make tasks small enough
for individual nodes. In this case, it is only possible to
make tasks small enough by dividing both A and B in all
their three dimensions.1 Assuming that the rows of A, the
columns of A (or the rows of B), and the columns of B
are divided into x, y, and z partitions, entangled polyno-
mial (EP) codes (Yu et al., 2018), to the best of our knowl-
edge, are the state-of-the-art codes that support such three-
dimensional division of matrices and require xyz + z − 1
tasks to recover the result of AB. In this paper, we propose
dual entangled polynomial (DEP) codes that require only
3
4xyz +

z
2 − 1 tasks to recover the job. Because of this, we

can also demonstrate that the memory requirement of each
task, and the decoding complexity of DEP codes will also
be lower than EP codes, when they are set to tolerate the
same number of stragglers.

2. Related Work
Lee et al. (Lee et al., 2018), for the first time, leveraged
ideas from coding theory to tolerate stragglers in distributed
matrix multiplication. In their work, only one input matrix

1The columns of A and the rows of B are considered as the
same dimension, as they should always be split in the same way to
make the multiplication feasible.

is split and encoded with an MDS (maximum distance sep-
arable) code, as shown in Fig. 1b. As the code is MDS, it
achieves the optimal recovery threshold, i.e., the result of
the job can be decoded from a theoretical minimum number
of any tasks. We name this approach as one-dimensional
coding (1D coding). Following this direction, different cod-
ing schemes, such as rateless coding (Mallick et al., 2018)
and sparse coding (Dutta et al., 2016) have been proposed.
As nodes with slower performance in a heterogeneous clus-
ter will always be considered as stragglers, 1D coding with
heterogeneous nodes has also been discussed where dif-
ferent workload will be assigned to nodes based on their
performance (Kiani et al., 2018; Reisizadeh et al., 2017).

As tasks with 1D coding may also be too large to be executed
on individual nodes, two-dimensional coding (2D coding)
makes it possible to split both two matrices in the multipli-
cation. Initially, 2D coding schemes were constructed by
reapplying 1D coding to the tasks encoded from 1D cod-
ing. In other words, a task AiB can be further encoded
into subtasks AiBj . In this way, a 2D coding scheme can
be constructed based on product codes (Lee et al., 2017;
Gupta et al., 2018; Park et al., 2018). The problem of prod-
uct codes is that the optimal recovery threshold cannot be
achieved. Given any i, if the results from subtasks encoded
from AiB cannot be decoded, the result of the whole job
cannot be decoded as well. Yu et al., on the other hand,
proposed polynomial codes, a family of two-dimensional
codes based on the Vandermonde matrix (Yu et al., 2017).
Different from product codes, polynomial codes achieve the
optimal recovery threshold. Besides MDS codes, Wang et
al. proposed 2D coding based on sparse coding that sig-
nificantly saves the decoding overhead with a near-optimal
recovery threshold (Wang et al., 2018).

In a matrix multiplication AB, with 2D coding we can split
A’s rows and B’s columns. The only dimension missed is
the columns of A (or equivalently the rows of B). Yu et
al. showed that convolution codes extended from poly-
nomial codes can be solely applied to this dimension (Yu
et al., 2017). Although three-dimensional coding (3D cod-
ing) based on product codes can be constructed combining
polynomial codes and convolution codes, it suffers from a
similar problem of high recovery threshold (Baharav et al.,
2018). Entangled polynomial (EP) codes, on the other hand,
are the first three-dimensional codes that are not based on
product codes (Yu et al., 2018). The recovery threshold
of EP codes is proved to be less than twice of the optimal
recovery threshold of 3D coding when x = 1 or y = 1. In
this paper, we propose dual entangled polynomial (DEP)
codes. DEP codes require about 25% fewer tasks to recover
the job than EP codes, making it far closer to the optimal
recovery threshold.

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

3. Background: Entangled Polynomial Codes
In this section, we give a brief introduction of entangled
polynomial (EP) codes (Yu et al., 2018), which will be
useful for the construction of our dual entangled polynomial
(DEP) codes. Assume that we have a job to calculate the
multiplication of an X × Z matrix A and a Z × Y matrix
B. Given three integers x, y, and z, where x|X , y|Y , and
z|Z, we evenly split the rows and columns of A into x and
z partitions and split the rows and columns of B into z and
y partitions. Therefore, we can split A and B into xz and
yz partitions. We use Ai,l, 0 ≤ i ≤ x−1, 0 ≤ l ≤ z−1, to
denote the submatrix ofAwhose rows and columns are from
the (i+ 1)-th partition of its rows and (l + 1)-th partitions
of its columns, respectively. We also define submatrices
Bl,j in the same way, 0 ≤ j ≤ y − 1, 0 ≤ l ≤ z − 1.
Meanwhile, the result C = AB can be split into x and y
partitions by its rows and columns. Similarly, we use Ci,j ,
0 ≤ i ≤ x− 1, 0 ≤ j ≤ y − 1, to represent its submatrices,
where Ci,j =

∑z−1
l=0 Ai,lBl,j .

We now demonstrate a property that plays an important role
in the construction of EP codes. We define two functions
Ãi(δ) =

∑z−1
l=0 Ai,lδ

l and B̃j(δ) =
∑z−1
l=0 Bz−1−l,jδ

l.
Therefore,

Ãi(δ)B̃j(δ) =

2z−2∑
t=0

 min(z−1,t)∑
l=max(0,t−z+1)

Ai,lBz−1−t+l,j

 δt.

In general, the coefficient of δt in Ãi(δ)B̃j(δ) is denoted as
M(i, j, t), and then we can see that the coefficient of δz−1,
i.e., M(i, j, z − 1), is

∑z−1
l=0 Ai,lBl,j = Ci,j . With this

property, it is no longer needed to calculate each individual
product of Ai,lBl,j , as we have already got their sum. This
property will also be extended in the construction of DEP
codes.

In order to get Ci,j for all feasible values of i and j, we
can define a coded task T (δ), which is the multiplication of∑x−1
i=0 Ãi(δ)δ

αi and
∑y−1
j=0 B̃j(δ)δ

βj . Therefore, we have
all possible values of i and j in Ãi(δ)B̃j(δ). In T (δ), the
coefficients where t = z − 1 are desirable while other
coefficients are considered as noise. In order to decode
the results, we need to choose values of α and β such that
the desirable coefficients appear in different terms in the
polynomial of T (δ). A natural and naive choice of α and
β is α = y(2z − 1) and β = 2z − 1. In Fig. 2a, we show
the corresponding exponents of δ whose coefficients are
M(i, j, t) with all values of i and j. We can see that the
exponents of δ in T (δ) range from 0 to xy(2z− 1)− 1, and
the exponents in the terms associated with all coefficients do
not coincide. As long as we have the result of T (δ) from any
xy(2z − 1) tasks with different values of δ, the results can
be decoded by interpolating T (x) using xy(2z− 1) distinct
points.

In fact, the choices of α and β in Fig. 2a are not opti-
mal, as only the exponents associated with M(i, j, z − 1)
should be distinct. For other coefficients that do not ap-
pear in C and are considered as noise, their coefficients
can be the same, in order to reduce the degree of T (δ) and
the recovery threshold. EP codes, hence, choose better
values of α and β where α = yz and β = z, and then
T (δ) =

∑
i,j Ãi(δ)B̃j(δ)δ

yzi+zj in which the exponents
range from 0 to xyz + z − 2, as shown in Fig. 2b. More-
over, we can see that when t = z − 1, for all feasible
values of i and j, the exponents of δ whose coefficients
are M(i, j, t) will not coincide, but most other exponents
are shared by two noise coefficients. Yu et al. proved that
when x = 1 or y = 1, the recovery threshold of EP codes
KEP = xyz + z − 1 is no more than twice the optimal
number Kopt, i.e., KEP < 2Kopt. In this paper, we show
that this number can be further reduced to 3

4xyz +
z
2 − 1,

which is less than 3
2Kopt when x = 1 or y = 1.

When x = 2, y = 1, and z = 2, we get an example of EP
codes. In this case,

A =
[
A0,0 A0,1
A1,0 A1,1

]
, B =

[
B0
B1

]
.

With EP codes, we have T (δ) = (A0,0δ
0 + A0,1δ

1 +
A1,0δ

2 + A1,1δ
3)(B1δ

0 + B0δ
1). If we have five tasks

finished with different values of δ = δi, i = 0, . . . , 4, we
will have

δ00 δ10 δ20 δ30 δ40
δ01 δ11 δ21 δ31 δ41
δ02 δ12 δ22 δ32 δ42
δ03 δ13 δ23 δ33 δ43
δ04 δ14 δ24 δ34 δ44

A0,0B1
A0,0B0 +A0,1B1
A0,1B0 +A1,0B1
A1,1B1 +A1,0B0

A1,1B0

 .
(1)

The left matrix in (1) is a Vandermonde matrix which is
invertible, and thus we can decode it by multiplying its
inverse on the left. After decoding, we will be able to get

AB =
[
A0,0B0 +A0,1B1
A1,1B1 +A1,0B0

]
.

4. Dual Entangled Polynomial Code: A
Special Case

In this section, we start from a special case of DEP codes
where 2|xy and 2|z. The idea of DEP codes, in general, is
to make the terms in the multiplication of Ãi(δ)B̃j(δ) with
different values of i and j share more noise coefficients.
From Fig. 2b, we can see that at most two coefficients can
share the same exponent with different values of i and j.
For example, the corresponding exponents of M(0, 0, z)
in Ã0(δ)B̃0(δ) and M(0, 1, 0) in Ã0(δ)B̃1(δ) are the same
with EP codes, which is z as shown in Fig. 2b. In DEP
codes, however, we increase this number by having at most
four coefficients sharing the same exponent. Therefore, we

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

(0, 0) (0, 1) · · · (i, j) · · · (x− 1, y − 1)
M(i, j, 0) 0 2z − 1 · · · (iy + j)(2z − 1) · · · (xy − 1)(2z − 1)

...
...

... · · ·
... · · ·

...
M(i, j, z − 1) z − 1 3z − 2 · · · (iy + j)(2z − 1) + z − 1 · · · (xy − 1)(2z − 1) + z − 1

...
...

... · · ·
... · · ·

...
M(i, j, 2z − 2) 2z − 2 4z − 3 · · · (iy + j + 1)(2z − 1)− 1 · · · xy(2z − 1)− 1

(a) A naive design (α = y(2z − 1), β = 2z − 1.)

(0, 0) (0, 1) · · · (i, j) · · · (x− 1, y − 1)
M(i, j, 0) 0 z · · · (iy + j)z · · · (xy − 1)z

...
...

... · · ·
... · · ·

...
M(i, j, z − 1) z − 1 2z − 1 · · · (iy + j)z + z − 1 · · · xyz − 1

...
...

... · · ·
... · · ·

...
M(i, j, 2z − 2) 2z − 2 3z − 2 · · · (iy + j)z + 2z − 2 · · · xyz + z − 2

(b) Entangled polynomial codes (α = yz, β = z)

Figure 2: Two examples of choices of α and β.

can further reduce the degree in T (δ) in each task, and thus
achieve an even lower recovery threshold.

In order to achieve this objective, we define

Ãi(δ) =

z
2−1∑
l=0

Ai,lδ
l +

z−1∑
l= z

2

Ax−1−i,lδ
l,

and

B̃j(δ) =

z
2−1∑
l=0

B z
2−1−l,jδ

l +

z−1∑
l= z

2

B 3
2 z−1−l,y−1−jδ

l.

We also define M(i, j, t) as the coefficient of δt in
Ãi(δ)B̃j(δ). In this way, we can find that the terms in
Ci,j will appear in M(i, j, z2 − 1) and M(x − 1 − i, y −
1− j, 32z − 1), i.e.,

M(i, j,
z

2
− 1) =

z
2−1∑
l=0

Ai,lBl,j ,

and

M(x− 1− i, y − 1− j, 3
2
z − 1) =

z−1∑
l= z

2

Ai,lBl,j .

In order to obtain Ci,j =M(i, j, z2 −1)+M(z−1− i, z−
1− j, 32z − 1), we need to make the exponents of these two
coefficients the same. As shown in Fig. 3, the coefficients in
the table can be divided into four areas. The coefficients in
the two areas with the same colors will coincide so that the
whole Ci,j will eventually appear as a coefficient in some
term. Meanwhile, the coefficients in the left half and the
right half will also coincide. The coefficients in each half

	� �
 ੈ 	ԧ� � Ԩ �
 	ԧ� �
 ੈ 	ԧ � Ԩ �
ੇ ੇ ੈ ੇ ੇ ੈ ੇԂ	Ԙ ԙ ԩ� �
 ԛ� ੈ ԛ� ԛ� ੈ ԛ�ੇ ੇ ੈ ੇ ੇ ੈ ੇੇ ੇ ੈ ੇ ੇ ੈ ੇԂ	Ԙ ԙ ��ԩ �
 ԛ� ੈ ԛ� ԛ� ੈ ԛ�ੇ ੇ ੈ ੇ ੇ ੈ ੇ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3: The general design of coefficients in DEP codes.

can be generated following the way in EP, and thus most
other terms will have four noise coefficients added together.

In this way, a task will calculate a function T (δ) = T1(δ) +
T2(δ

−1), where

T1(δ) =

x
2−1∑
i=0

Ãi(δ)δ
αi ·

y∑
j=0

B̃j(δ)δ
βj , (2)

and

T2(δ) =

x−1∑
i= x

2

Ãi(δ)δ
αi ·

y∑
j=0

B̃j(δ)δ
βj

 δ−(x
2−1)i−(y−1)j .

(3)

Note that (x2 − 1)i+ (y − 1)j in (3) is actually the highest
exponent in (2). Moreover, in T2(δ−1) the exponents will
decrease as we replace δ with δ−1. Therefore, each expo-
nent in the left half in Fig. 3 can be replicated in the right
half. If we choose α = 3

2yz and β = 3
2z, we will have

exponents in T (δ) as shown in Fig. 4. We can see that the
exponents range from 0 to 3

4xyz+
1
2z− 2. Meanwhile they

are point symmetric across their center, i.e., the exponent of
the term whose coefficient is M(i, j, t) equals that whose
coefficient is M(x− 1− i, y − 1− j, 2z − 2− t), 0 ≤ i ≤
x − 1, 0 ≤ j ≤ y − 1, 0 ≤ t ≤ 2z − 2. Especially, when

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication	� �
 ੈ 	Ԙ ԙ
 ੈ 	 ϵ֓ � Ԩ �
 	 ϵ֓ �
 ੈ 	 ϵ֓ � Ԙ Ԩ � Ԙ
 ੈ 	ԧ � Ԩ �
Ԃ	Ԙ ԙ �
 � ੈ ϯϵ ԩ	ԘԨ � ԙ
 ੈ ϯΚ ԧԨԩ ϯϵ ԩ ϯΚ ԧԨԩ � ϵ֕ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � �ԩ � ੈ �ԩ �ੇ ੇ ੈ ੇ ੈ ੇ ੇ ੈ ੇ ੈ ੇԂ	Ԙ ԙ φϵ ԩ �
 ϵ֕ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � ϵ֕ � ੈ ϯΚ ԧԨԩ ԩ � ϯΚ ԧԨԩ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � ϯϵ ԩ � ੈ ϯϵ ԩ �ੇ ੇ ੈ ੇ ੈ ੇ ੇ ੈ ੇ ੈ ੇੇ ੇ ੈ ੇ ੈ ੇ ੇ ੈ ੇ ੈ ੇԂ	Ԙ ԙ ϯϵ ԩ �
 ϯϵ ԩ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � ϯϵ ԩ � ੈ ϯΚ ԧԨԩ � ϯΚ ԧԨԩ ԩ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � ϵ֕ � ੈ ϵ֕ �ੇ ੇ ੈ ੇ ੈ ੇ ੇ ੈ ੇ ੈ ੇԂ	Ԙ ԙ �ԩ �
 �ԩ � ੈ ϯϵ ԩ	ԘԨ � ԙ
 � �ԩ � ੈ ϯΚ ԧԨԩ � ϵ֕ � ϯΚ ԧԨԩ ϯϵ ԩ ੈ ϯϵ ԩ	ԘԨ � ԙ
 ੈ �
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4: Exponents in DEP codes (0 ≤ i ≤ x
2 − 1, 0 ≤ j ≤ y).

t = z
2 − 1 or t = 3

2z − 1, the corresponding exponents will
also not coincide with any other exponents in the same half
of the table, except their matching entry in the other half of
the table. In other words, the coefficient of such term eventu-
ally will beM(i, j, 12z)+M(x−1−i, y−1−j, 32z) = Ci,j .
Therefore, with the results of T (δ) from 3

4xyz +
1
2z − 1

tasks with different values of δ, we can decode them and get
each Ci,j , 0 ≤ i ≤ x, 0 ≤ j ≤ y.

We now show an example with x = 2, y = 1, and z = 2.
Following (2) and (3), we have

T1(δ) = (A0,0δ
0 + A1,1δ

1)(B0δ
0 + B1δ

1),

and

T2(δ) = (A1,0δ
0 + A0,1δ

1)(B0δ
0 + B1δ

1)δ−2.

Therefore, if we have three tasks finished where δ = δi,
i = 0, . . . , 2, we have[

δ00 δ10 δ20
δ01 δ11 δ21
δ02 δ12 δ22

][
A0,0B0 +A0,1B1

N
A1,1B1 +A1,0B0

]
, (4)

where N = A0,0B1 + A1,1B0 + A1,0B1 + A0,1B0. The
coefficient matrix in (4) is a Vandermonde matrix and thus
(4) can be decoded in the same way as (1). Compared to the
example of EP codes with the same values of x, y, and z in
Sec. 3, we can add all noise coefficients together with DEP
codes. Hence, we only need to have 3 tasks to complete
the job instead of 5 tasks with EP codes, saving 40% nodes.
Although with DEP codes each node needs to calculate
two multiplications, each multiplication requires the same
amount of memory as the task with EP codes, and thus DEP
codes will not increase the memory requirement.

5. Generalization
We now present the general construction of DEP codes.
From this general construction, we will see that the special
case in Sec. 4 is not just one special case, but also the
optimal case in terms of the recovery threshold.

5.1. The choice of exponents

Different from Sec. 4, we no longer require that z is
even, but just a positive integer. We first study the ex-
ponents of terms in the polynomial of Ãi(δ)B̃j(δ). We
already know that the exponents in this polynomial range
in [0, 2z − 2]. In the previous examples, we should place
Ci,j =

∑z−1
l=0 Ai,lBl,j , or a part of the summation into co-

efficients with the same exponents such that eventually they
can be added back together. In EP codes, the exponent cho-
sen for Ci,j is z − 1, and the special case of DEP codes in
Sec. 4 chooses z

2 − 1 and 3
2z − 1.

× δ0 δ1 δ2 δ3

δ0 0 1 2 3
δ1 1 2 3 4
δ2 2 3 4 5
δ3 3 4 5 6

Figure 5: Exponents in Ãi(δ)B̃j(δ) where z = 4.

We show an illustration of such choices in Fig. 5, where
we use different colors to highlight the choices in these two
case. We can observe that the entries chosen in EP codes
fall in the antidiagonal, and those in DEP codes in Sec. 4
also fall in lines parallel to the antidiagonal. In fact, such
choices can be generalized to all exponents as long as they
are congruent modulo z. In Fig. 5 (z = 4), coefficients
whose corresponding exponents are 2 and 6, as well as 0
and 4, can also be chosen to place the terms in Ci,j .

Therefore, there can be z choices of exponents: 0 and z, 1
and z + 1, . . ., z − 2 and 2z − 2, and z − 1. If the choice is
z−1, the constructed code becomes EP codes. If the choice
is z

2 − 1 and 3
2 − 1, given 2|z, the corresponding code is

already presented in Sec. 4. In this section, we will present
the construction with any choices of exponents for Ci,j .

If the exponents chosen forCi,j is p and p+z, 0 ≤ p ≤ z−2,

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

(0, 0) (0, 1) · · · (i, j) · · · (x
2
− 1, y − 1)

M(i, j, 0) 0 2z − p− 1 · · · (iy + j)(2z − p− 1) · · · (xy
2

− 1)(2z − p− 1)
...

...
... · · ·

... · · ·
...

M(i, j, p) p 2z − 1 · · · (iy + j)(2z − p− 1) + p · · · (xy
2

− 1)(2z − p− 1) + p
...

...
... · · ·

... · · ·
...

M(i, j, p+ z) p+ z 3z − 1 · · · (iy + j)(2z − p− 1) + p+ z · · · (xy
2

− 1)(2z − p− 1) + p+ z
...

...
... · · ·

... · · ·
...

M(i, j, 2z − 2) 2z − 2 4z − p− 3 · · · (iy + j)(2z − p− 1) + 2z − 2 · · · (xy
2

− 1)(2z − p− 1) + 2z − 2

(a) 0 ≤ p ≤ z
2
− 1.

(0, 0) (0, 1) · · · (i, j) · · · (x
2
− 1, y − 1)

M(i, j, 0) 0 p+ z + 1 · · · (iy + j)(p+ z + 1) · · · (xy
2

− 1)(p+ z + 1)
...

...
... · · ·

... · · ·
...

M(i, j, p) p 2p+ z + 1 · · · (iy + j)(p+ z + 1) + p · · · (xy
2

− 1)(p+ z + 1) + p
...

...
... · · ·

... · · ·
...

M(i, j, p+ z) p+ z 2p+ 2z + 1 · · · (iy + j)(p+ z + 1) + p+ z · · · (xy
2

− 1)(p+ z + 1) + p+ z
...

...
... · · ·

... · · ·
...

M(i, j, 2z − 2) 2z − 2 p+ 3z − 1 · · · (iy + j)(p+ z + 1) + 2z − 2 · · · (xy
2

− 1)(p+ z + 1) + 2z − 2

(b) z
2
− 1 ≤ p ≤ z − 1.

Figure 6: Exponents in DEP codes with general values of z.

we define

Ãi(δ) =

p∑
l=0

Ai,lδ
l +

z−1∑
l=p+1

Ax−1−i,lδ
l, (5)

and

B̃j(δ) =

p∑
l=0

Bp−l,jδ
l +

z−1∑
l=p+1

Bp+z−l,y−1−jδ
l, (6)

Therefore, in Ãi(δ)B̃j(δ), the coefficients M(i, j, t) when
t = p and t = p+ z are

M(i, j, p) =

p∑
l=0

Ai,lBl,j

and

M(i, j, p+ z) =

z−1∑
l=p+1

Ax−1−i,lBl,y−1−j .

Hence, Ci,j =M(i, j, p) +M(x− 1− i, y− 1− j, p+ z).

Specifically, we have M(i, j, p) = 0 when p = −1, or
M(i, j, p+ z) = 0 when p = z − 1. Then Ãi(δ) and B̃j(δ)
become the same as in EP codes, and hence we can directly
have M(i, j, p) = Ci,j .

5.2. Construction

Now we present how to construct a task T (δ) with a gen-
eral value of p. Similar to Sec. 4, we can still construct a

coded task T (δ) = T1(δ) + T2(δ
−1) from (2) and (3), with

different values of α and β.

In order to minimize the recovery threshold, the value of j
should also be minimized. However, the value of j should
also not be too small so that the exponent of M(i, j, p) is
the same as that of other noise coefficients. We show in
Fig. 6 the optimal choice of j. We only show the left half
of the exponents, i.e., when i ≤ x

2 , as the right half will be
point symmetric to the left half.

When p ≤ z
2 − 1, the number of exponents above M(i, j, p)

is p − 1, no more than that below M(i, j, p + z) which is
z − p− 2. Hence, j should be no less than 2z − p− 1. For
example, when (i, j) = (0, 1), the exponent of M(0, 1, p)
should be no less than 2z − 1. Otherwise, it will be the
same with the exponent of some noise coefficient below
M(0, 0, p+ z). Therefore, j = 2z− p+1 when p ≤ z

2 − 1,
and then i = (2z − p+ 1)y. In this way, the degree of the
polynomial in T1(δ) is (xy2 − 1)(2z − p− 1) + 2z − 2.

Similarly, when p ≥ z
2 − 1, the number of exponents

above M(i, j, p) is the same with or higher than that be-
low M(i, j, p+ z). Hence, the exponent of M(0, 1, 0) can
directly start from p + z + 1, as the value of 2p + z + 1
must be higher than p, making this exponent different
from M(0, 0, p) and M(0, 0, p + z). In this case, j =
p + z + 1 and i = (p + z + 1)y. The degree of T1(δ) is
(xy2 − 1)(p+ z + 1) + 2z − 2.

Moreover, if we choose p = −1 or p = z − 1 in (5) and (6),
all terms inCi,j are already added together inM(i, j, z−1),

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

as M(i, j,−1) and M(i, j, 2z − 1) do not exist. Therefore,
the dual construction cannot be applied to these two choices
of p, and we have EP codes in such cases.

5.3. Recovery Threshold

From the general construction above, we can see that if
p ≤ z

2 − 1, the degree of T1(δ) is minimized when p =
z
2 − 1. This degree is also minimized to the same value
when p = z

2 − 1 if p ≥ z
2 − 1. The two cases above indicate

that the degree of T1(x) and thus the recovery threshold is
minimized, when p = z

2 − 1, 2|p. We can see that this is
exactly the case in Sec. 4.

We can also notice that the recovery threshold of DEP codes
is symmetric to the values of p around z

2−1. Let p1 ≤ z
2−1

and p2 ≥ z
2−1. We can see that if p1+p2 = z−2, we have

2z− p1− 1 = p2+ z+1, and thus the degrees of T1(δ) are
also the same. Therefore, if p is odd, the minimum recovery
threshold is achieved when p = z+1

2 − 1 or p = z−1
2 − 1,

which equals 3
4xyz +

xy
4 + z

2 + 1.

On the other hand, the highest degree is achieved when
p = 0 or p = z− 2, which equals xyz− 1

2xy. Even in such
worst cases, DEP codes still outperform EP codes.

We compare the actual number of tasks required for decod-
ing in Fig. 7. We assume z = 10 in Fig. 7a, and z = 11 in
Fig. 7b. When p = −1 or p = z−1, the corresponding data
are for EP codes. With different values of x and y, we can
see that DEP codes always require fewer tasks for decoding
than EP codes, and save up to 30.6% tasks with the optimal
value of p.

-1
 (EP)

0 1 2 3 4 5 6 7 8 9
 (EP)

p

50

100

150

200

ta

sk

x=4, y=4
x=4, y=8

x=8, y=6
x=8, y=8

(a) z = 10.

-1
 (EP)

0 1 2 3 4 5 6 7 8 9 10
 (EP)

p

50

100

150

200

ta

sk

x=4, y=4
x=4, y=8

x=8, y=6
x=8, y=8

(b) z = 11.

Figure 7: Comparison of the recovery threshold.

6. Evaluation
In this section, we present our empirical results of running
distributed matrix multiplication in clusters of virtual ma-
chines hosted on Microsoft Azure. All virtual machines are
of type B1s, with 1 vcpu and 1 GB of memory.

We implement the coded distributed matrix multiplication
with OpenMPI (ope, 2017). Coded matrices inside each
task T (δ) are placed on one of the n virtual machines, i.e.,
workers. We use one more virtual machine as a master,
which controls the job and decodes results received from
workers. Each worker will send its result to the master. The
master, at the same time, keeps polling to check if there is
any new result from a worker. If the number of received
results meets the recovery threshold of the corresponding
coding scheme, the master will stop receiving results of any
other unfinished tasks and start to decode received results.

We first run a job to multiply two matrices AB, where the
sizes of A and B are 3600 × 200 and 200 × 3600. Each
job is repeated for 20 times and we demonstrate the average
results. We measure three metrics: the total job completion
time, the decoding time, and the number of tolerable strag-
glers. In each job, we launch n = 24 virtual machines as
workers. The corresponding 24 tasks are encoded with EP
codes and DEP codes, respectively. We also add one more
scheme EP X2, where each worker will execute two tasks
of EP codes. In this way, a worker in EP X2 will also have
two multiplications, the same as DEP codes, except that
the results of two tasks are not added together but directly
uploaded to the master.

In Fig. 8a, we first show the number of tolerable stragglers
with three configurations of (x, y, z). As DEP codes re-
quire fewer tasks to recover the job, it is natural to observe
that the number of stragglers tolerable with DEP codes is
higher than EP codes by up to 120%. Although EP X2 can
tolerate slightly more stragglers, it does not improve the
performance of the job, as it doubles the amount of data
each worker needs to upload. We can see in Fig. 8b that its
job completion time is even higher than EP codes. Although
each worker also needs to calculate two multiplications with
DEP codes, fewer tasks are required for decoding. Hence,
we observe that the job completion time with DEP codes
can be lower than EP codes, even though in a task with DEP
codes two multiplications need to be calculated. We observe
that the major bottleneck of workers is sending their results
to the master. Hence, DEP codes can finish the data trans-
mission faster, while the jobs in EP and EP X2 will have to
wait for more tasks. The decoding overhead at the master,
similarly, can also be significantly reduced by roughly 50%.

Another interesting observation in Fig. 8 is that increasing
the number of partitions in all three schemes does not nec-
essarily save the time of the job, especially when the value
of z is increased. This is because with a higher z, the size
of the result in each task (only depending on x and y) will
not change, but we need to accept results from more tasks
to complete the job. The decoding complexity will also be
increased with more partitions. Therefore, when making
tasks small enough for workers, we should always increase

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

(2,2,2) (2,3,2) (2,2,4)
(x,y,z)

0

10

20

30
(a) # stragglers tolerable

EP
EP X2
DEP

(2,2,2) (2,3,2) (2,2,4)
(x,y,z)

0

1

2

(b) job completion time (sec.)

EP
EP X2
DEP

(2,2,2) (2,3,2) (2,2,4)
(x,y,z)

0.00

0.25

0.50

0.75

1.00
(c) decoding time (sec.)

EP
EP X2
DEP

Figure 8: Performance comparison between EP and DEP codes with a fixed number of workers (n = 24).

J1 J2 J30

1

2

1e7
(a) memory consumption

 (# elements)

EP
DEP

J1 J2 J30

1

2

3

4
(b) job completion time (sec.)

EP
DEP

J1 J2 J30.0

0.1

0.2

0.3

0.4
(c) decoding time (sec.)

EP
DEP

Figure 9: Performance comparison between EP and DEP codes of three different jobs.

the values of x and y before z.

We now run three more jobs encoded with EP and DEP
codes. This time, the number of workers and the number
of stragglers to tolerate are fixed. Specifically, we have n
workers and s stragglers to tolerate. The configurations of
the three jobs are shown in Fig. 10. We only compare EP
and DEP in this experiment, as EP X2 will require the same
amount of memory with higher job completion time.

n s
EP DEP

X Y Zx y z x y z
J1 12 3 2 2 2 2 3 2 2.4k 2.4k 2.4k
J2 17 4 2 3 2 2 2 4 10k 0.3k 10k
J3 24 5 2 2 4 2 3 4 0.2k 9.6k 9.6k

Figure 10: Configurations of jobs.

With the same values of n and s, DEP codes allow us to split
the input matrix into more partitions, lowering the memory
consumption of each task which can then be fit into workers
with less memory. The memory overhead is measured in
terms of the elements in the input and output matrices of
each task. In the three jobs, the memory overhead can be
saved by 22.2%, 47.6%, and 32.7%, respectively. With
saved memory, the job completion time still remains similar
to EP codes, except when the value of z is increased in
the job J2 because we need to tolerate the same number of
stragglers. In practice, however, the choices of z can be

more flexible so that the job completion time can be better
controlled. Finally, we find that even though the number of
tasks required for decoding remains the same in each job
for the two coding schemes, DEP codes can still save the
decoding time by up to 42.0% in the job J1 and J3, thanks
to its higher number of partitions which also makes the size
of results smaller for decoding. In the job J2, however, its
value of y is even smaller with DEP codes, making the size
of results larger. Again, the choices of (x, y, z) can be more
flexible in practice, as we do not need to have exactly the
same values of n and s.

7. Conclusions
In the large-scale matrix multiplication, the input matrices
are split into partitions so that they can be calculated on mul-
tiple resource-limited nodes. Although coding in distributed
matrix multiplication can efficiently tolerate a high number
of stragglers, most existing coding schemes are limited in
only one or two dimensions. In this paper, we propose dual
entangled polynomial (DEP) codes, a three-dimensional
coding scheme that requires significantly fewer tasks to
complete the job than entangled polynomial (EP) codes,
the state-of-the-art three-dimensional codes for distributed
matrix multiplication, by running one more matrix multi-
plication than EP codes in each task. Achieving lower or
similar job completion time, DEP codes can also lower the
memory requirement of tasks and the decoding overhead.

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication

References
OpenBLAS: An Optimized BLAS library, 2017. URL
https://www.openblas.net.

Apache Hadoop, 2018. URL http://hadoop.
apache.org.

Baharav, T., Lee, K., Ocal, O., and Ramchandran, K.
Straggler-proofing Massive-scale Distributed Matrix Mul-
tiplication with d-dimensional Product Codes. In IEEE
International Symposium on Information Theory (ISIT),
pp. 1993–1997, 2018.

Dutta, S., Cadambe, V., and Grover, P. Short-Dot: Comput-
ing Large Linear Transforms Distributedly Using Coded
Short Dot Products. In Advances in Neural Information
Processing Systems, pp. 2100–2108. 2016.

Gupta, V., Wang, S., Courtade, T., and Ramchandran, K.
OverSketch: Approximate Matrix Multiplication for the
Cloud. In IEEE International Conference on Big Data,
2018.

Huang, P., Guo, C., Zhou, L., Lorch, J. R., Dang, Y., Chinta-
lapati, M., and Yao, R. Gray Failure: The Achilles’ Heel
of Cloud-Scale Systems. In USENIX Conference on Hot
Topics in Operating Systems (HotOS), 2017.

Kiani, S., Ferdinand, N., and Draper, S. C. Exploitation of
Stragglers in Coded Computation. In IEEE International
Symposium on Information Theory (ISIT), 2018.

Lee, K., Suh, C., and Ramchandran, K. High-dimensional
Coded Matrix Multiplication. In IEEE International Sym-
posium on Information Theory (ISIT), 2017.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding Up Distributed Machine
Learning Using Codes. IEEE Transactions on Informa-
tion Theory, 64(3):1514–1529, 2018.

Mallick, A., Chaudhari, M., and Joshi, G. Rateless Codes
for Near-Perfect Load Balancing in Distributed Matrix-
Vector Multiplication. Technical report, 2018. URL
https://arxiv.org/pdf/1804.10331.pdf.

Park, H., Lee, K., Sohn, J.-Y., Suh, C., and Moon, J. Hi-
erarchical Coding for Distributed Computing. In IEEE
International Symposium on Information Theory (ISIT),
2018.

Reisizadeh, A., Prakash, S., Pedarsani, R., and Avestimehr,
S. Coded Computation over Heterogeneous Clusters. In
IEEE International Symposium on Information Theory
(ISIT), pp. 2408–2412, 2017.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis,
N. Gradient Coding: Avoiding Stragglers in Distributed
Learning. In International Conference on Machine Learn-
ing (ICML), pp. 3368–3376, 2017.

Wang, S., Liu, J., and Shroff, N. Coded Sparse Matrix
Multiplication. In International Conference on Machine
Learning (ICML), 2018.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Polyno-
mial Codes: an Optimal Design for High-Dimensional
Coded Matrix Multiplication. Advances in Neural Infor-
mation Processing Systems (NIPS), 2017.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Straggler
Mitigation in Distributed Matrix Multiplication: Funda-
mental Limits and Optimal Coding. In IEEE International
Symposium on Information Theory (ISIT), pp. 2022–2026.
IEEE, 2018.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Spark: Cluster Computing with Working
Sets. In USENIX Conference on Hot Topics in Cloud
Computing (HotStorage), 2010.

https://www.openblas.net
http://hadoop.apache.org
http://hadoop.apache.org
https://arxiv.org/pdf/1804.10331.pdf

