
1

Beehive: Erasure Codes for Fixing Multiple
Failures in Distributed Storage Systems

Jun Li, Student Member, IEEE, and Baochun Li, Fellow, IEEE

Abstract—In distributed storage systems, erasure codes have been increasingly deployed to tolerate server failures without loss of

data. Traditional erasure codes, such as Reed-Solomon codes, suffer from a high volume of network transfer and disk I/O to recover

unavailable data at failed storage servers. Typically, unavailable data at different failed storage servers in a distributed storage system

are fixed separately. It has been shown that it is possible to reduce the volume of network transfer significantly by reconstructing data

from multiple storage servers at the same time. However, there has been no construction of erasure codes to achieve it without

imposing strict constraints on system parameters.

In this paper, we propose Beehive codes, designed for optimizing the volume of network transfers to fix the data on multiple failed

storage servers. Beehive codes can be constructed over a wide range of system parameters at code rate no more than 0.5, while

incurring slightly more storage overhead than Reed-Solomon codes. To achieve the optimal storage overhead as Reed-Solomon

codes, we further extend vanilla Beehive codes to MDS Beehive codes, which incurs near-optimal volumes of network transfers during

reconstruction. We implement both Beehive and MDS Beehive Codes in C++ and evaluate their performance on Amazon EC2. Our

evaluation results have clearly shown that the volume of both network transfers and disk I/O can be conserved by a substantial margin.

Index Terms—distributed storage system, cooperative regenerating codes, MDS, interference alignment.

✦

1 INTRODUCTION

LARGE-SCALE distributed storage systems, especially
those in data centers, store a massive amount of data

over a large number of storage servers. As storage servers
are built with commodity hardware, their frequent fail-
ures can be expected on a daily basis [1]. To keep data
available in spite of server failures, replicated data are
traditionally stored. For example, the Hadoop Distributed
File System (HDFS) [2] stores three copies of the original
data (i.e., 3-way replication) on different storage servers by
default.

However, there exists an expensive storage overhead to
store multiple copies of the original data. With three copies,
for example, at most 33% of the total storage space can
be effectively used. Therefore, distributed storage systems
(e.g., [3], [4]) have been replacing replicated data with era-
sure codes, especially for cold or archival storage [5]. Using
erasure codes, distributed storage systems can enjoy better
tolerance against server failures, with the same or even less
storage overhead.

Among erasure codes, Reed-Solomon (RS) codes are
the most popular choice since RS codes can achieve the
optimal storage overhead while tolerating the same number
of failures. To achieve failure tolerance with RS codes, we
assume that data are stored in blocks with a fixed size, a
common practice in most distributed storage systems. RS
codes can compute r parity blocks from k original data
blocks, such that any k of the total k + r blocks can recover
all the original data blocks. We can group such k + r blocks
as one stripe, and blocks in the same stripe are stored in
different storage servers. Therefore, RS codes can tolerate
at most r failures within the same stripe. For example, RS

• J. Li and B. Li are with the Department of Electrical and Computer
Engineering, University of Toronto.

codes with k = 4 and r = 2 can tolerate the same number
of failures as 3-way replication, by storing only 6 blocks in
total while 3-way replication needs to store 12 blocks.

Once a storage server fails, this failure can be fixed by
reconstructing the missing data on a replacement storage
server. With RS codes, the replacement server needs to
download k other existing blocks in the same stripe to re-
construct one single block, imposing k times of the network
transfer with replication. It has been reported that in one of
Facebook’s clusters, the reconstruction operation can incur
more than 100 TB of data every day [6]. Besides, the same
amount of disk I/O will also be imposed on the existing
storage servers as well.

To reduce the amount of network transfer during re-
construction, there have been considerable interests in
the construction of minimum-storage regenerating (MSR)
codes (e.g., [7]) that achieve the optimal network transfer
to reconstruct a missing block while consuming the same

block

1

block

2

block

3

block

4

block

5

block

6

block

1

128 MB

128 MB

128 M
B

block

1

block

2

block

3

block

4

block

5

block

6

block

1

64 MB

64 MB

64 M
B

64 M
B

RS code MSR code

network transfer

 = 256 MB

network transfer

= 384 MB

Fig. 1. The amount of network transfer imposed by reconstructing the
missing block using RS and MSR codes, with k = 3 and r = 3, and a
block size of 128 MB.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

storage overhead as RS codes. Compared with RS codes,
MSR codes can significantly save network transfer during
reconstruction. For example, in Fig. 1, we assume that each
block has 128 MB and we compute 3 parity blocks with RS
codes and MSR codes where k = 3 and r = 3. To reconstruct
one block with MSR codes, the replacement server needs to
download only a fraction of each block from four existing
storage servers, rather than three whole blocks with RS
codes. In this example, though MSR codes require data to be
downloaded from one more server than RS codes, the total
network transfer can still be saved by 33.3% as from each
server only a half of its data is downloaded. However, MSR
codes incur even more disk I/O on storage servers, since
with MSR codes the data sent to the replacement server
typically have to be encoded from the whole block, and the
replacement server needs to download data from even more
servers than RS codes.

MSR codes are designed to optimize network transfer
to reconstruct one single block with the optimal storage
overhead. However, in a distributed storage system it is not
uncommon that multiple blocks need to be reconstructed
with various reasons [8]. First, blocks failures can be corre-
lated in the distributed storage system. It has been reported
that disk failures are correlated such that disks installed
together are more likely to fail together [9]. When a network
failure occurs, on the other hand, multiple servers can be
disconnected from the network. Data inside such servers
hence become unavailable and need reconstruction. Second,
large-scale distributed storage systems scan block failures
periodically [5]. Because of the large volume of data stored
in the system, the scan can take a long period of time,
and it becomes more likely to observe multiple failures.
The correlated failures make it even more likely to find
multiple failures within the same period of the scan. Third,
distributed storage systems may batch reconstructions on
purpose, in order to save power [5] or to avoid unnecessar-
ily reconstructing blocks that are just temporarily unavail-
able [10].

When fixing multiple failures is not uncommon in the
distributed storage system or even is intended, we can
design erasure codes that reconstruct data from multiple
failures in batches rather than separately, such that even less
network transfer will be incurred than MSR codes [11], [12].
Meanwhile, we can significantly save disk I/O as we can
read existing blocks only once instead of multiple times.
However, while the optimal network transfer to reconstruct
multiple blocks has been theoretically established [12], there
has been no explicit construction of erasure codes that
achieve both the optimal network transfer to reconstruct
exact data of multiple failed servers and the optimal storage
overhead simultaneously, except for those that impose strict
constraints on system parameters (e.g., [12], [13]).

In this paper, we propose Beehive codes, a new family of
erasure codes, that can reconstruct data of multiple blocks
and support a wide range of system parameters with code
rate no more than 1

2 . Besides an instant reduction of disk
I/O because of reconstructing multiple blocks at the same
time, Beehive codes achieve the optimal network transfer
of reconstructing multiple blocks. As illustrated in Fig. 2,
compared to MSR codes, the total amount of disk read is
saved by 50% when we reconstruct two blocks at the same

MSR code

block

1

block

2

block

3

block

4

block

5

block

6

block

1

42.7 M
B

42.7 MB

42.7
 M

B

Beehive code

block

6

42.7 MB

42.7 MB

4
2
.7

 M
B

4
2
.7

 M
B

42.7 MB

4
2

.7
 M

B

4
2

.7
 M

B

block

1

block

2

block

3

block

4

block

5

block

6

block

1

64 M
B

64 M
B

64 M
B

block

6

64 MB

64 MB

6
4
 M

B

6
4
 M

B

64 MB

disk read

= 1024 MB

disk read

= 512 MB

Fig. 2. Comparison of the amount of network transfer and disk read
imposed by the reconstruction of two missing blocks with MSR and
Beehive codes, with k = 3, r = 3, and blocks of size 128 MB.

time, and the amount of network transfer is saved by 16.6%
as well. In fact, the more failures we fix at the same time, the
more network transfer can be saved.

Nevertheless, Beehive codes are not optimal in terms of
the storage overhead, though we show that the additional
storage overhead is marginal. In this paper, we also present
an extension of Beehive codes, called MDS1 Beehive codes,
that achieve the optimal storage overhead like RS and MSR
codes. On the other hand, MDS Beehive codes consume
more network transfer than Beehive codes. Yet, we show
that the network transfer of MDS Beehive codes is very close
to Beehive codes.

We implement both Beehive and MDS Beehive codes in
C++ and evaluate their performance on Amazon EC2. Our
experimental results show that compared to MSR codes,
Beehive codes can save up to 23.8% of network traffic and
up to 83.3% of disk I/O during reconstruction. Similar
results can be observed with MDS Beehive codes as well.

2 BACKGROUND

The construction of Beehive and MDS Beehive codes de-
pends on Product-Matrix-MSR (PM-MSR) codes [7] by ex-
ploiting one of its important property. In this section, we
briefly review the construction of PM-MSR codes and this
important property, and survey the related literature as well.

2.1 Model and Notations

Suppose that the original data contain B bytes, which can
be grouped into k blocks with the same size (i.e., B

k
bytes).

Given k, r, and d, the corresponding (k, r, d) MSR codes
can encode the k original blocks into k + r blocks. If the
MSR codes are systematic, k of the total k + r blocks contain
the original data, and thus they are known as data blocks.
The other r blocks, on the other hand, are known as parity
blocks. Systematic erasure codes are desirable for distributed
storage systems, as the original data can be directly read
without any decoding operations. We assume that all era-
sure codes discussed and constructed in this paper are
systematic unless mentioned otherwise.

MSR codes achieve the optimal storage overhead be-
cause each block contains B

k
bytes. In other words, any k

blocks have exactly B bytes with MSR codes (as well as all

1. In coding theory, erasure codes that achieve the optimal storage
overhead are termed as maximum distance separable (MDS) codes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

. . .

block
1

block
2

block
k

segment

(w symbols)

generation

block
k+1

. . .

block
n

stripe

Fig. 3. Illustration of notations: a hierarchy involving stripe, generation,
block, and segment, where block 1 to k are data blocks and block k + 1
to n are parity blocks.

other MDS codes such as RS codes), and it is impossible
to recover the original data with less data. The k original
blocks and the r parity blocks belong to the same stripe, and
all blocks in a stripe will be stored in different servers. To
reconstruct a block, the replacement server will contact d
existing servers that store other blocks in the same stripe. To
achieve the optimal network transfer, MSR codes require the
replacement server to download B

k(d−k+1) bytes from each

of the d servers [14].
To achieve the optimal network transfer, typically a block

will have to contain γ(d− k + 1) segments with MSR codes,
such that a server only needs to send γ segments to the
replacement server during reconstruction, though typically
this segment will be computed from all γ(d−k+1) segments
in the block. On the other hand, since each block should
have the same size, we will need to divide the original data
into generations if there are more than B bytes. For simplicity,
we consider one generation in this paper, as all generations
will be encoded in the same way. Hence, all blocks we
discuss in this paper will be within the same stripe. In Fig. 3,
we illustrate the notations described above.

2.2 Product-Matrix-MSR codes

The PM-MSR codes are constructed over a finite field, where
data are treated as symbols on the finite field. In practice a
symbol on a finite field can simply be a byte.2 Thus, the
operations of encoding, decoding and reconstruction are all
performed on bytes with the arithmetic of the finite field.
In this paper, however, we do not rely on any direct knowl-
edge of the finite field, and readers can simply consider its
arithmetic as usual arithmetic.

We now briefly introduce the PM-MSR codes to the
extent required to understand this paper, and more details
can be found in [7]. In the PM-MSR code, γ = 1. Thus, a
block contains α = d − k + 1 segments, and each segment
contains w bytes of data where w = B

αk
.

We show the construction of PM-MSR codes via an ex-
ample where k = 3, r = 3, d = 4, and thus α = 4−3+1 = 2.
As k = 3, we have three original blocks, f1, f2, and f3.
Each of these blocks are further divided into 2 segments as
α = 2, i.e., fi1 and fi2, i = 1, 2, 3. For now we assume that

2. As a byte can have at most 28 possible values, it corresponds to
a finite field of size 28. Though the minimum size of the finite field
required by MSR codes depends on the values of system parameters,
28 is big enough for typical values of system parameters in practice. We
can also easily extend the construction of MSR codes to a larger finite
field.

each segment contains one symbol only. The corresponding
PM-MSR code can then be constructed3 by multiplying two
matrices together, i.e.,

1 1 1 1
1 2 4 8
1 3 5 15
1 4 3 12
1 5 2 10
1 6 7 1

·

f11 f12
f12 f21
f22 f31
f31 f32

, (1)

where any 4 rows in the first matrix are linearly independent
and the second matrix can be vertically split into two sym-
metrical submatrices, each of which contains a half of the
original data. The result of (1) is a (k + r)× α matrix where
each row corresponds to the α = 2 segments in each of the
k + r encoded blocks. For example, the first block contains
two segments, f11+f12+f22+f31 and f12+f21+f31+f32.

Traditionally, a erasure code is represented in the form of
the generating matrix, which looks different from the form
in (1). In fact, we can equivalently write the code constructed
in (1) into the form of the generating matrix, i.e.,

1 1 0 1 0 1
0 1 0 1 1 1
1 2 0 4 0 8
0 1 0 2 4 8
1 3 0 5 0 15
0 1 0 3 5 15
1 4 0 3 0 12
0 1 0 4 3 12
1 5 0 2 0 10
0 1 0 5 2 10
1 6 0 7 0 1
0 1 0 6 7 1

·

f11
f12
f21
f22
f31
f32

. (2)

Comparing the result of (2) with (1), the only difference is
that we move the two segments of the same block into two
consecutive rows in (2). As the code given in the original
form of PM-MSR codes in [7] can be equivalently converted
into the form with the generating matrix, we always use the
generating matrix to describe a PM-MSR code in the rest of
the paper.

One benefit of using the generating matrix to describe
erasure code is that we can directly extend the size of
each segment without changing the generating matrix. In
general, we use a horizontal vector fij of size w bytes to
represent the j-th segment in block i, j = 1, . . . , α, and use
fi, . . . , fk, k matrices of size α × w, to represent the k data
blocks. Let n = k + r, and then a PM-MSR code can be as-
sociated with an nα× kα generating matrix G to generate all
blocks in a stripe. If we divide G into n submatrices of size

α × kα such that G =
[

gT1 · · · gTn
]T

, where gTi represents
the transpose of gi, the n blocks generated by G can thus be

denoted as giF where F =
[

fT
1 · · · fT

k

]T
. In the example

of (2) we can have g1 =

[

1 1 0 1 0 1
0 1 0 1 1 1

]

, and we

can obtain gi from all blocks in this way, i = 1, . . . , n. Given
any k blocks, a square submatrix of G can be composed of
the kα rows corresponding to these k blocks. Hence, we can

3. For simplicity in this example the code is constructed on a small
finite field of size 24.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

decode the k data blocks (i.e., F) by multiplying the inverse
of this submatrix with these k blocks.

The above example of PM-MSR codes is not systematic.
However, we can easily convert a non-systematic PM-MSR
code into a systematic one. Given a generating matrix G,
its submatrix G0 containing the top kα rows in G must be
non-singular as the corresponding k blocks it generates can
decode the original data. Hence, we can always get G−1

0 F
from F and vice versa, and we can use G to encode G−1

0 F ,
which is equivalent to encoding F with a new generating
matrix GG−1

0 , i.e., G · (G−1
0 F) = (GG−1

0) · F . No change
will occur to the performance such as failure tolerance or
network traffic during reconstruction, as all corresponding
operations remain the same. Using this technique termed
as symbol remapping in [7], [15], we can obtain a systematic
PM-MSR code as the top k rows in GG−1

0 is an identity
matrix. In other words, giF is identical to the data block fi,
i = 1, . . . , k. Thus, the first k blocks are data blocks and the
rest are party blocks. In the rest of this paper, the PM-MSR
codes we refer to will always be systematic where the top
kα rows in G form an identity matrix.

Similarly, we use the generating matrix to describe RS
codes as well. Given k and r, the generating matrix G of the
corresponding RS code will be a (k + r) × k matrix. With
RS codes, each block contains 1 segment only, and hence
each block can similarly be denoted as giF . The generating
matrix G can be constructed by a matrix in which any k
rows are linearly independent, e.g. a Cauchy matrix [16].

2.3 Interference alignment

To reconstruct a block giF , we need to have d existing
blocks, which we term as helpers during reconstruction, and
compute one segment on each helper. With PM-MSR codes,
it is required that d ≥ 2k − 2. We show an example of the
reconstruction in Fig. 4, where the PM-MSR code is the sys-
tematic version of the code in (2) with k = 3, r = 3, d = 4.
Assume that block 1 is unavailable, and we choose d = 4
blocks from the other 5 blocks as helpers. We show that
each chosen block simply adds its two segments into one
and block 1 can be reconstructed from these 4 segments.

Fig. 4. An illustration of reconstructing one missing block encoded by
PM-MSR codes with k = 3, r = 3, d = 4. With 4 segments computed
from d = 4 existing blocks, we cancel the interference components
f21 + f22 and f31 + f32 in the last two segments and solve the desired
components f11 and f12.

We notice that in the 4 segments offered by the existing
blocks, there are some components, termed as interference
components, that do not contribute to block 1 including
f21, f22, f31, f32, since block 1 only requires two segments,
f11 and f12, which are called desired components. Hence,
in order to reconstruct block 1, we need to get rid of the
interference components from the 4 received segments.

Though we can solve both the 4 interference components
and the 2 desired components by 6 linearly independent
segments, PM-MSR codes achieve the optimal network
traffic during reconstruction by requiring only 4 segments,
because the interference components are carefully aligned.
We can see from Fig. 4 that the linear combinations of f21
and f22 in the 4 segments are either 0 (non-existing) or a
scalar multiple of f21 + f22, and we can observe the same
pattern for f31 and f32. As we do not need the interference
components to reconstruct the missing block, we do not
have to solve them at all. Instead, we can simply solve
f21 + f22 and f31 + f32 in this case.

This property is known as interference alignment, a con-
cept borrowed from the context of wireless communica-
tion [17] that aligns the interference components to a low-
dimensional linear subspace to extract desired components.
Similarly, in the reconstruction of PM-MSR codes, inter-
ference alignment makes it possible for PM-MSR codes to
reconstruct a block exactly from the segments received from
helpers with the optimal network transfer, and plays an
important role in the construction of our own codes as well.
We now formalize this property to facilitate our future code
construction.

We use D to represent the index of each helper. For
example, D = {1, 2} if we have two helpers g1F and g2F .
With PM-MSR codes, each helper will compute this segment
with a vector vi to reconstruct giF . In other words, we will
compute vTi gjF from a helper gjF . For example, we have

v1 =

[

1
1

]

in Fig. 4. Then we can reconstruct giF from d

segments vTi gjF , j ∈ D.
For convenience, we start from the case that d = 2k − 2.

At this time, α = k−1. With PM-MSR codes, any α columns
in V = [v1 . . . vn] are linearly independent, where typi-
cally V is constructed as a Vandermonde or Cauchy matrix.
Let L be an α-subset of {1, . . . , n}, and then any vi can be
represented as

vi =
∑

l∈L

ai,lvl. (3)

On the other hand, from the construction of PM-MSR
codes, we can explicitly obtain a vector Λ = [λ1, . . . , λn]. If
gjF is the block to be reconstructed where j /∈ L, we can let
ui→j = (λi − λj)

−1vj , and it is proved in [7] that

uT
i→jgiF =

∑

l∈L

ai,lu
T
l→jglF + ũT

i→jgjF, (4)

where ũi→j = (λi−λj)
−1vi−

∑k−1
l=1 ai,l(λl−λj)

−1vl, i 6= j.
From (4), we can see that the components with glF are

interference components if l ∈ L, and the component with
gjF is the desired component. It is easy to see that ∀i ∈ D,
interference components in (4) with the same l are aligned
such that they are scalar multiples of each other. Therefore,
we can solve gjF with segments received from α+(k−1) =
d helpers. Besides, notice that with a given i and j not in L,
the coefficient, ai,l, does not change for all l ∈ L.

For the more general case with d > 2k − 2, (k, r, d) PM-
MSR codes are constructed from (k + x, r, d + x) PM-MSR
codes where x = d− (2k − 2). The technique to convert the
code is to assume the first x blocks of original data are zeros,
and then all elements corresponding to the x blocks in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

generating matrix as the eventual result will not be affected.

In other words, suppose that Ĝ is the generating matrix
of the (k + x, r, d + x) PM-MSR codes. By the definition

above, we know that Ĝ has (n + x)α rows and (k + x)α
columns. The (k, r, d) PM-MSR codes will be constructed by

truncating the first xα rows in Ĝ, and its generating matrix

G is a submatrix of Ĝ with the last nα rows and the last kα
columns.

To reconstruct a block, the interference alignment de-
fined in (4) still applies. However, to find the coefficients ai,l
the truncation in the code construction has to be considered.
With the (k + x, r, d+ x) PM-MSR codes, we can obtain the
matrix V̂ = [v̂1 . . . v̂n+x], and each v̂i can be expressed as
∑

i∈L̂
âi,lv̂l, where L̂ is an α-subset of {1, . . . , n + x}. We

can obtain ûi→j from the (k+ x, r, d+ x) PM-MSR codes as
well, i 6= j.

In the reconstruction with the (k, r, d) PM-MSR codes,
suppose that L is the set of helpers, and then we de-

fine Lx = {l + x|l ∈ L}, and L̂ = {1, . . . , x} + Lx.
A helper giF is going to send uT

j giF to the replacement
server, where ui→j = û(i+x)→(j+x). Therefore, we can
write the same formula as (4), where ai,l = âi+x,l+x, and

ũi→j = (λ̂i+x− λ̂j+x)
−1v̂i+x−

∑

l∈L̂
âi+x,l(λ̂l− λ̂j+x)

−1v̂l.
This property of interference alignment of PM-MSR

codes will serve as a foundation in the construction of
Beehive and MDS Beehive codes in this paper.

2.4 Related Work

In order to optimize network transfer during reconstruc-
tion without loss of fault tolerance, Dimakis et al. [14]
have explored the theoretical lower bound of network
transfer of single-block reconstruction, and there are many
related works that present constructions of such erasure
codes (called regenerating codes) [18]. Among these codes,
minimum-storage regenerating (MSR) codes achieve the opti-
mal storage overhead as RS codes.

Besides the two system parameters, k and r, of RS codes,
MSR codes introduce one more system parameter d, d ≥ k.
When d = k, MSR codes simply need to obtain k whole
blocks to reconstruct one unavailable block, just the same
as RS codes, and hence in this paper we always assume
d > k unless mentioned otherwise. Typically, with MSR
codes it will only need to receive fractions of d blocks,
instead of whole blocks, to reconstruct an unavailable block.
In fact, the higher value d is, the less network transfer will
be consumed during reconstruction.

There has been various literature that proposes con-
structions of MSR codes. While some constructions of MSR
codes do not reconstruct blocks exactly but only preserve
the ability to tolerant failures (e.g., [14], [19]), in this paper
we only consider the constructions (e.g., [7]) that the un-
available blocks can be reconstructed exactly, otherwise data
blocks will not contain original data after reconstruction.
As the distributed storage system favors accessing original
data without decoding, it is required to reconstruct the
unavailable block exactly. Besides, among MSR codes that
can reconstruct data exactly, there exist two categories that
reconstruct all blocks exactly and reconstruct only data
blocks exactly (e.g., [20], [21]). In this paper, our attentions
are paid at those that reconstruct all blocks exactly.

Typically, an MSR code encodes k blocks into k+r blocks
where each block contains α segments. During reconstruc-
tion, a replacement server obtains γ segments from each of
d available blocks, where α = γ(d − k + 1). A code with
a smaller value of γ will make encoding, decoding, and
reconstruction of less complexity. The complexity is hence
minimized when γ = 1. However, Shah et al. [22] have
proved that there exists no construction of MSR codes with
γ = 1 when d < 2k− 3. When γ = 1, a construction of MSR
codes with d = k + r − 1 ≥ 2k − 1 was proposed by Suh et
al. [23], and Rashmi et al. [7] have pushed one step further by
proposing the Product-Matrix-MSR codes with d ≥ 2k − 2,
which is the most general construction in terms of the values
of system parameters for MSR codes with γ = 1 to our best
knowledge. With d ≥ 2k − 2 and d < k + r, the maximum
code rate of such MSR codes is k

2k−1 .
When a higher complexity is permitted, MSR codes

with a more general range of system parameters can be
constructed that achieve code rates high than 1

2 . Cadambe et
al. [24] have shown that MSR codes can be asymptotically
constructed for all valid (k, r, d) when γ goes to infinity.
Reconstructing only data blocks exactly, Goparaju et al. [21]
have proposed a construction of MSR codes for all valid
values of (k, r, d) with γ exponential in k. As for MSR codes
that reconstruct any block exactly with a finite value of γ,
constructions were proposed in [25], [26], [27], [28], [29]
where γ is still exponential in k. Polynomial γ exists in some
particular construction of MSR codes with some fixed code
rate [30], [31], [32].

On the other hand, to reconstruct a block with MSR
codes, typically the γ segments have to be encoded from
all α segments in the block, and thus MSR codes will
incur more disk I/O than RS codes as more blocks will
be contacted with MSR codes (i.e., d > k). As the optimal
disk I/O is achieved when the data read is the same as
data transferred over the network, some constructions of
MSR codes with r = 2, such as Zigzag codes [26] and some
other variants [27], [28], [29], can reconstruct data blocks
exactly with the optimal disk I/O. Rashmi et al. [15] have
also proposed a variant of the Product-Matrix-MSR codes
that support to reconstruct d−k+1 blocks with the optimal
disk I/O. However, in general MSR codes do not optimize
disk I/O for reconstructing any unavailable block.

Network transfer and disk I/O can be further saved
when there are multiple blocks to reconstruct at the same
time. It is shown that cooperative regenerating codes [11], [12],
[13], [33], [34], [35], [36], [37] can reconstruct multiple blocks
with even lower network transfer than regenerating codes.
Similarly, minimum-storage cooperative regenerating (MSCR)
codes achieve the optimal storage overhead.

Besides k, r, and d, MSCR codes introduce one more
system parameter t such that t blocks are reconstructed
at the same time. Similarly, MSCR codes can be con-
structed asymptotically as γ goes to infinity [24] where
α = (d − k + t)γ. However, there has been no explicit
construction of MSCR codes that can achieve the optimal
network transfer during reconstruction, with general values
of system parameters and finite values of γ. So far there exist
only a few constructions of MSCR codes with specific values
of some system parameters, such as d = k [12], k = 2 [33],
t = 2 [13], [35], [36], and d = n − t [37]. In this paper,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

we propose Beehive codes that achieve the same network
transfer of MSCR codes, with near-optimal storage overhead
over a wide range of system parameters. The construction
of Beehive codes aims at low code rates (at most 1

2), a low
complexity with γ = 1, and reconstructing any t blocks
exactly. MDS Beehive codes, an extension of Beehive codes,
achieve the optimal storage overhead with near-optimal
network transfer. Though neither Beehive codes nor MDS
Beehive can be strictly categorized as MSCR codes, due to
the non-optimality of either storage overhead or network
transfer, both Beehive codes and MDS Beehive codes offer
a more practical solution for distributed storage systems
than all existing constructions of MSCR codes, as they can
be constructed with much more combinations of system
parameters with performance very close to MSCR codes.

3 BEEHIVE CODES

3.1 Code Construction

Beehive codes are associated with four system parameters:
k, r, d, t. With given system parameters, (k, r, d, t) Beehive
codes encode data into n(= k + r) blocks where any k
of them can recover the original data. The reconstruction
operation requires d helpers to fix data of t unavailable
blocks, t > 1.

Unlike other erasure codes, such as RS codes or MSR
codes, with Beehive codes a generation of data will firstly be
grouped before encoding, into two parts that contain k and
k − 1 blocks, respectively. Blocks in the two parts, however,
will have different sizes. Each block contains d − k + 1
segments in the first part, and t− 1 segments in the second
part, where segments in the two parts have the same size.
As shown in Fig. 5, we denote the k blocks in the first part
as F = [fT

1 · · · fT
k]T and the k − 1 blocks in the second

part as C = [cT1 · · · cTk−1]
T .

. . .

F

C

giF

the original data block i

k−1
∑

l=1

ai,lcl

c1 c2 ck−1

. . .f1 f2 fk

original MSR

extension

of Beehive

Fig. 5. The construction of Beehive codes. To compute a block, Beehive
codes combine two parts of data encoded with MSR codes and RS
codes.

We construct Beehive codes by combining MSR and RS
codes on these two parts, where F will be encoded by PM-
MSR codes and C will be encoded by RS codes. As described
in Sec. 2.2, we can construct the generating matrix G of
(k, r, d) PM-MSR codes when d ≥ 2(k − 1). Hence, we
can encode F with such G = [gT1 · gTn]

T and get giF ,
i = 1, . . . , n, and thus Beehive codes require that d must be
no less than 2k − 2 as well.

As for the second part C , we encode the k − 1 blocks
with RS codes where coefficients are obtained from the
(k, r, d) PM-MSR codes used in the first part. As described
in Sec. 2.3, we can let L = {1, . . . , k − 1}, and get ai,l,
i = 1, . . . , n, l = 1, . . . , k − 1. Hence we encode the second
part into n blocks as

∑k−1
l=1 ai,lcl, i = 1, . . . , n.

Given data encoded from the two parts, Beehive codes
finally group them into n blocks such that each block
contains d − k + 1 segments from giF and t − 1 segments

from
∑k−1

l=1 ai,lcl, as shown in Fig. 5. Therefore, with Beehive
codes, each block will contain d−k+t segments. If each seg-
ment contains w bytes, each block is of size (d−k+t)w bytes,
and each generation will have [k(d−k+1)+(k−1)(t−1)]w
bytes.

It is easy to see that any k blocks among n blocks
computed with Beehive codes can recover the original data.
To decode the original data, we need to decode both F and
C . Given any k blocks, we can decode F from giF with MSR
codes. On the other hand, let A be the matrix composed of
ai,l, i.e., A = [ai,l]n×(k−1). By (3) it can be inferred that any
k−1 rows in A are linearly independent since any α vectors
in V are linearly independent. Hence, we can decode C from
any k − 1 blocks. Therefore, we can decode both F and C
from any k blocks.

With Beehive codes, the original data are embedded into
the first k blocks. Since PM-MSR codes are systematic codes,
giF in the first k blocks (1 ≤ i ≤ k) contains the original
data in F . On the other hand, since ai,l is obtained as
coefficients in (3), we can find the original data of C in the
first k − 1 blocks with Beehive codes. Therefore, Beehive
codes are systematic codes.

However, Beehive codes do not achieve the optimal
storage overhead like RS or MSR codes. The amount of data
in any k blocks is k(d−k+t)w bytes, which are (t−1)w bytes
more than the original data in each generation. On the other
hand, we can show that this additional storage overhead is
marginal. Given k and r, the storage overhead of RS or MSR
codes is n

k
, while the storage overhead of Beehive codes is

n(d− k + t)

k(d− k + t)− (t− 1)
∈

(

n

k
,

n

k − 1

)

. (5)

With practical values of k, the upper bound in (5) is close to
the optimum. For example, when k = 10, Beehive codes
will increase the storage overhead by at most 11.1%. In
other words, with the same amount of original data, Beehive
codes will incur 11.1% more storage space to tolerate the
same number of failures.

Moreover, Beehive codes require that d ≥ 2k − 2 as the
construction is built upon PM-MSR codes. Hence, the code
rate of Beehive codes, which is the inverse of the storage
overhead mentioned above, will be less than k

n
≤ k

d+t
≤ 1

2
when t > 1.

3.2 Reconstruction

Now we discuss how to reconstruct multiple blocks with
Beehive codes. We assume that N is the set of indexes
of blocks to be reconstructed, and D is the set of indexes
of helpers, where |N | = t, |D| = d, and N ∩ D = ∅.
For convenience, we term blocks to be reconstructed as
newcomers, and we may use the index of a helper/newcomer
to represent the helper/newcomer itself in this paper.

With Beehive codes, a block contains giF and
∑k−1

l=1 ai,lcl. For any i ∈ D and j ∈ N , the helper i will send

one segment uT
i→jgiF + hT

j

∑k−1
l=1 ai,lcl to the newcomer j,

where hj is a vector of size t−1 bytes. The only requirement

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

of hj is that any t − 1 vectors in {hj |1 ≤ j ≤ n} must be
linearly independent.

At the side of the newcomer, its operation is divided
into two stages. In the first stage, each newcomer will send
one segment to each of other newcomers. In this stage, we
will exploit the interference alignment of the PM-MSR codes
in (4). Since all coefficients ai,l used in the construction of
Beehive codes is obtained when L = {1, . . . , k− 1}, we first
assume that for all j ∈ N , j /∈ L, and then extend into the
general case of any newcomers.

Given a newcomer j during reconstruction, it receives

d segments from all helpers, i.e., uT
i→jgiF + hT

j

∑k−1
l=1 ai,lcl,

i ∈ D. By (4), each such segment can be written as

uT
i→jgiF + hT

j

k−1
∑

l=1

ai,lcl =
k−1
∑

l=1

ai,l(u
T
l→jglF + hT

j cl)

+ ũi→jgjF. (6)

Thus, similar to PM-MSR codes, we can consider
uT
l→jglF + hT

j cl, 1 ≤ l ≤ k − 1, as interference components,
and each interference component is aligned with different
values of i. As |D| = d, we can solve gjF as well as the
k − 1 interference components. The interference alignment
will be used in the second stage, to make the newcomer

reconstruct
∑k−1

l=1 aj,lcl.
Taking newcomer j′ as an example, the newcomer

j will send the newcomer j′ a segment linearly com-
bined from gjF and interference components above, i.e.,
∑k−1

l=1 aj′,l(u
T
l→jglF + hT

j cl) + ũT
j′→jgjF . Again, by (4), we

can get

k−1
∑

l=1

aj′,l(u
T
l→jglF + hT

j cl) + ũT
j′→jgjF

= uT
j′→jgj′F + hT

j

k−1
∑

l=1

aj′,lcl. (7)

As the newcomer j′ has solved gj′F in the first stage,
uT
j′→jgj′F can be canceled out. From all the other t − 1

newcomers, the newcomer j′ can get t − 1 segments

hT
j

∑k−1
l=1 aj′,lcl, ∀j ∈ N \ {j′}. Since any t − 1 vectors in

{hj |j ∈ N} are linearly independent, in the second stage,

any newcomer j′ can thus solve
∑k−1

l=1 aj′,lcl, j
′ ∈ N . There-

fore, the two parts in a Beehive block can be reconstructed
from these two stages.

Now we discuss a more general case when there can be
newcomer j between 1 and k− 1. To deal with this case, we
will equivalently transform Beehive codes with a different
L such that N ∩ L = ∅. Since d > k − 1, we can let L =
(l1 · · · lk−1) be a (k−1)-subset of D. Since N∩D = ∅, any
newcomer in D will not be an element of L as well. We will
prove that after such a transformation, similar interference
alignment can be applied.

Since in the first k−1 blocks we can find the original data

of ci, 1 ≤ i ≤ k − 1, we can let ci =
∑k−1

l=1 ai,lcl, 1 ≤ i ≤ n.
We also let Ai = [ai,1 · · · ai,k−1]

T , 1 ≤ i ≤ n. Given L,
we define AL as the matrix containing Ai for all i in L, i.e.,
AL = [Al1 · · ·Alk−1

]T . Then we can write ci as

ci =
k−1
∑

l=1

ai,lcl =
k−1
∑

m=1

a′i,mclm , (8)

where we let A′

i = [a′i,1 · · · a′i,k−1]
T =

(

AT
i ·A−1

L

)T
.

On the other hand, consider the interference alignment
of PM-MSR codes in Sec. 2.3. We know that v̂li+x =
∑k−1+x

l=1 âli+x,lv̂l, where x = d− 2(k− 1). Hence, by letting

Âi = [âi,1 · · · âi,k−1+x]
T , we can get

v̂Ti+x = ÂT
i+x ·

v̂T1
...

v̂Tk−1+x

(9)

= ÂT
i+x ·

[

I 0

X AL

]−1

·

v̂T1
...
v̂Tx

v̂Tl1+x

...
v̂Tlk−1+x

(10)

= ÂT
i+x ·

[

I 0

−A−1
L X A−1

L

]

·

v̂T1
...
v̂Tx

v̂Tl1+x

...
v̂Tlk−1+x

, (11)

where we use X to denote the coefficients of components
with vTi , 1 ≤ i ≤ x.

By (4), we know that in PM-MSR codes, we only need to
consider the coefficients of vli+x, 1 ≤ i ≤ k − 1. From (11),
we can know that such coefficients will be determined by
[âi+x,1+x · · · âi+x,k−1+x] ·A

−1
L = Ai ·A

−1
L .

Therefore, with L defined by the current helpers, we can
have interference components that correspond with the k−1
elements in L, i.e.,

uT
i→jgiF +hT

j

k−1
∑

l=1

ai,lcl =
k−1
∑

m=1

a′i,m(uT
lm→jglmF +hT

j clm)

+ ũi→jgjF. (12)

Similarly, we can also rewrite (7) such that

k−1
∑

m=1

a′j′,m(uT
lm→jglmF + hT

j clm) + ũT
j′→jgjF

= uT
j′→jgj′F + hT

j

k−1
∑

m=1

aj′,mclm . (13)

Combining (8), (12), and (13), we know that with any
t newcomers, we can reconstruct them after equivalently
transforming Beehive codes with interference components
tailored for these newcomers.

3.3 Implementation

So far we have explained how to construct Beehive codes
and how to reconstruct multiple blocks with Beehive codes,
from a mathematical perspective. In practice, we implement
Beehive codes as linear codes, such that all operations can be
performed as linear combinations on the given data. Given a
generation of size [k(d−k+1)+(k−1)(t−1)]w bytes, we fill
all these bytes into an (k(d−k+1)+(k−1)(t−1))×w matrix,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

which can be partitioned as [fT
1 cT1 · · · fT

k−1 cTk−1 fT
k]T .

According to Sec. 3.2, the dimensions of f1, . . . , fk and
c1, . . . , ck−1 are (d−k+1)×w and (t−1)×w, respectively.

With Beehive codes, the n blocks will be generated by
matrix multiplication, i.e., GB · [fT

1 cT1 · · · fT
k−1 cTk−1 fT

k]T ,
where GB is the generating matrix of Beehive codes. With
the given system parameters, GB should be an n(d − k +
t)× (k(d− k+1)+ (k− 1)(t− 1)) matrix. Since every block
encoded by Beehive codes contains d − k + t segments, we
can partition GB into n submatrices, by every (d − k + t)
rows. In other words, we can write

GB =

gB1
...
gBn

,

where gBi is a matrix of size (d − k + t) × (k(d − k + 1) +
(k−1)(t−1)), 1 ≤ i ≤ n. Hence, the block i can be denoted
as gBi · [fT

1 cT1 · · · fT
k−1 cTk−1 fT

k]T .

Fig. 6. An example of (3, 3, 4, 2) Beehive codes. This figure demon-
strates the construction of the generating matrix (GB) by combining the
generating matrices of (3, 3, 4) PM-MSR codes (G) and (2, 4) RS codes
(A).

Assume that the generating matrices of PM-MSR codes
and RS codes inside the Beehive codes are G and A. The
block i will contain giF and

∑k−1
l=1 ai,lcl. As illustrated in

Fig. 6, we partition gi into k submatrices of an equal size.

Besides, we have
∑k−1

l=1 ai,lcl =
∑k−1

l=1 ai,lIt−1cl, where It−1

is a (t− 1)× (t− 1) identity matrix. Then we can construct
gBi by interweaving parts of gi and Ai alternatively. Notice
that this way we can make GB contain an identity matrix
on top, and thus we can find the original data of F and
C sequentially in the first k blocks, which helps users
of storage systems to locate data easily and to read data
sequentially.

During reconstruction, a helper i is going to calculate
[uT

i→j hT
j] · g

B
i [fT

1 cT1 · · · fT
k−1 cTk−1 fT

k]T , and send the
result of the multiplication to the newcomer j. This is
straightforward following our analysis above in Sec. 3.2.

We use Ri→j , a row vector of size w bytes, to rep-
resent the segment transferred from block i to block j,
where i and j can be either a helper or a newcomer.
Further, we use RD→j to denote all the segments sent from
helpers to the newcomer j. For example, if D = {1, 2},

RD→3 =

[

R1→3

R2→3

]

. Similarly, we use Rj→N and RN→j

to denote the segments sent to the newcomer j from other
newcomers and the segments sent from other newcomers

to the newcomer j, respectively. Notice that at this time,
the newcomer j should be excluded from the matrix. For

example, if N = {3, 4, 5}, RN :→4 =

[

R3→4

R5→4

]

.

We use i1, . . . , ld to denote the d helpers in D where
i1 < · · · < ld, and we let L = {i1, . . . , ik−1}. Then we can
have the corresponding A′

i from this L, 1 ≤ i ≤ n by (8).
Receiving d segments from helpers, the newcomer j will

first calculate

(A′

i1
)T ũT

i1→j

...
...

(A′

id
)T ũT

id→j

−1

·RD:→j . (14)

By (12), the result of the equation above will be

uT
i1→jgi1F + hT

j ci1
...

uT
ik−1→jgik−1

F + hT
j cik−1

gjF

. In other words, we can find

gjF in the last d− k + 1 rows of the result.
Similarly, we use j1, . . . , jt to denote the t newcomers

in N where j1 < . . . < jt. Without loss of generality, we
assume that j = js where 1 ≤ s ≤ t. To send data to other
newcomers, the newcomer j will calculate

(A′

j1
)T ũT

j1→j

...
...

(A′

js−1
)T ũT

j−1→j

(A′

js+1
)T ũT

j+1→j

...
...

(A′

jt
)T ũT

jt→j

·

uT
i1→jgi1F + hT

j ci1
...

uT
ik−1→jgik−1

F + hT
j cik−1

gjF

,

(15)
which is Rj→N . In other words, the newcomer can send one
row of the result to each of the other t− 1 newcomers.

The newcomer j will also receive t − 1 segments
from other newcomers, i.e., RN→j . By (13), we can get
∑k−1

l=1 a′j,lcil by calculating

ũT
j→j1

hT
j1

...
...

ũT
j→js−1

hT
js−1

ũT
j→js+1

hT
js+1

...
...

ũT
j→jt

hT
jt

Id−k+1 0

−1

·

[

gjF
RN→j

]

. (16)

The first t − 1 rows of the result will be
∑k−1

l=1 a′j,lcil =
∑k−1

l=1 aj,lcl.

4 MDS BEEHIVE CODES

Beehive codes are not MDS codes, i.e., not achieving the
optimal storage overhead. The reason, from a mathematical
perspective, is that in the construction C contains only k−1
blocks while we assume that any k blocks can recover the
original data. In this section, we extend the construction of
Beehive codes to make MDS Beehive codes, an MDS version
of Beehive codes. The MDS Beehive codes, as the name
suggests, achieve the optimal storage overhead. However,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

a bit more traffic than Beehive codes will be incurred to
reconstruct the same number of blocks, if blocks have the
same size.

Since MDS Beehive codes is extended from the construc-
tion of Beehive codes, many parts of the construction is simi-
lar to Beehive codes, as well as the reconstruction operation.
Therefore, we will focus on the differences between them in
this section.

4.1 Code construction

MDS Beehive codes have the same system parameters as
Beehive codes. To construct MDS Beehive codes, we still
divide a generation of data into two parts, F and C ,
where both F and C will be divided into k blocks. To
construct (k, r, d, t) MDS Beehive codes, we will encode F
with (k, r, d − 1) PM-MSR codes, such that each block in F
will have d − k segments, instead of d − k + 1 segments
with Beehive codes. Because of this, the value of d of MDS
Beehive codes should be no less than 2(k− 1) + 1 = 2k− 1.
Each block in C will still have t − 1 segments, which will
be encoded by (k, r) RS codes. A block computed by MDS
Beehive codes will then combine the d − k segments from
F and the t − 1 segments from C . If each segment has w
bytes, a generation with MDS Beehive codes will contain
k(d− k + t− 1)w bytes.

We know that from the (k, r, d − 1) PM-MSR codes, we
can get an associated n × (k − 1) matrix A by letting L =
{1, . . . , k − 1}. However, in order to encode C , we need to
have a generating matrix with k columns, since this time
we have k blocks in C . Therefore, we need to expand A
with one more column to accommodate the new block while
encoding the other k− 1 blocks in the same way as Beehive
codes.

We use AM to denote the generating matrix to encode
C of MDS Beehive codes. In other words, AM = [A M]
where M is a column vector with n bytes. It is required
that after this expansion any k rows in AM is linearly
independent.

Remember that under PM-MSR codes, A is obtained
from the matrix composed of vectors in V̂ , such that

V̂ T =

[

Ix 0

X A

]

·

v̂T1
...
v̂Tx
v̂Tx+1

...
v̂Tx+k−1

,

where we use X to denote coefficients of components with
v̂i, 1 ≤ i ≤ x, just like what we do in (10).

In the construction of PM-MSR codes, V̂ T is required
that any x + k − 1 rows are linearly independent. Here we

choose V̂ to be a Vandermonde matrix4 to construct the PM-
MSR codes because it is easy to be extended by adding one
more column on the right. Then we add one more row at
the bottom, such that the new matrix W can be written as

WT =

[

V̂ T y
0 1

]

, (17)

4. We can also choose the Cauchy matrix and it can be expanded in a
very similar way.

where y = (y1 · · · yn+x)
T is a column vector with n + x

bytes, used to expand V̂ to be a larger Vandermonde matrix.
From (17) it is easy to see that any k rows in W are linearly
independent. We use wi to denote the i-th column in W . If
1 ≤ i ≤ n+ x,

wi =

[

v̂i
yi

]

=
k+x−1
∑

l=1

ai,l

[

v̂l
yl

]

+ (yi −
k+x−1
∑

l=1

ai,lyl)

[

0

1

]

=
k+x−1
∑

l=1

ai,lwl + (yi −
k+x−1
∑

l=1

ai,lyl)wn+x+1.

Therefore, we can have

w1

...
wk+x−1

wk+x

...
wn+x

=

[

Ix 0

X AM

]

·

w1

...
wk+x−1

wn+x+1

,

where M =

0

yk+x −
∑k+x−1

l=1 ak+x,lyl
...

yn+x −
∑k+x−1

l=1 an+x,lyl

. In this way, we

can expand A into AM while any k rows in A are linearly
independent, which will be used as the generating matrix to
encode C .

Assume G is the generating matrix of the (k, r, d−1) PM-
MSR codes, and let M = [m1 . . . mn]

T . Then each block
computed from MDS Beehive codes can be represented as

giF and
∑k−1

i=1 ai,lcl +mick, 1 ≤ i ≤ n.
Inside MDS Beehive codes, the PM-MSR codes and the

RS codes are both MDS codes, and thus MDS Beehive codes
are also MDS. This can also be verified as any k blocks with
MDS Beehive codes will contain the same amount of data
as the original data, and they can recover the original data
by solving F and C with the PM-MSR and the RS codes,
respectively. Since MDS Beehive codes require that d ≥ 2k−
1, the highest code rate will be no more than 1

2 for all values
of t.

4.2 Reconstruction

The way of reconstruction of MDS Beehive codes is also
extended from Beehive codes. For simplicity, we first dis-
cuss the case where no newcomer is in {1, . . . , k − 1}.
Given a helper i and a newcomer j, the helper will send

uT
i→jgiF + hT

j (
∑k−1

l=1 ai,lcl +mick) to the newcomer, which
can be written as

uT
i→jgiF + hT

j (
k−1
∑

l=1

ai,lcl +mick) =

k−1
∑

l=1

ai,l(u
T
l→jglF + hT

j cl) + ũi→jgjF +mih
T
j ck. (18)

With d helpers, the newcomer will be able to solve gjF
(containing d − k segments) and hT

j ck, as well as the k − 1

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

interference components ai,l(u
T
l→jglF+hT

j cl), 1 ≤ l ≤ k−1.
The newcomer j will then send the following data to the
newcomer j′:

k−1
∑

l=1

aj′,l(u
T
l→jglF + hT

j cl) +mj′h
T
j ck + ũT

j′→jgjF

= uT
j′→jgj′F + hT

j (
k−1
∑

l=1

aj′,lcl +mj′ck).

Hence, the newcomer j′ can cancel out the component with

gj′F and then solve
∑k−1

l=1 aj′,lcl + mj′ck with the t − 1
segments received from all other newcomers.

From the analysis in Sec. 3.2, we know that to discuss
the reconstruction with general newcomers, we only need
to consider A, which will be affected when we change L
to a different set. Therefore, it is easy to see that (8)-(11) can
still be applied with MDS Beehive codes. By adding mih

T
j ck

and mj′h
T
j ck at both sides of (12) and (13) respectively, we

can also prove that any t blocks can be reconstructed with
MDS Beehive codes.

4.3 Implementation

Similar to Beehive codes, with MDS Beehive codes we group
the original data into generations of size k(d − k + t − 1)w
bytes. Each generation will be filled into an k(d−k+t−1)×
w matrix, which can be partitioned as [fT

1 cT1 · · · fT
k cTk]

T .
The dimensions of f1, . . . , fk and c1, · · · , ck are (d− k)×w
and (t− 1)× w, respectively.

Fig. 7. An example of (3, 4, 5, 2) MDS Beehive codes. This figure
demonstrates the construction of the generating matrix (GM) by com-
bining the generating matrix (G) of (3, 4, 4) PM-MSR codes and AM

extended from the generating matrix (A) of (3, 4) RS codes.

We use Fig. 7 to illustrate how we construct the gener-
ating matrix GM of MDS Beehive codes. The dimension of
GM is n(d − k + t − 1) × k(d − k + t − 1), where every
d − k + t − 1 rows can be used to compute one block. In
other words, if we partition GM as

GM =

gM1
...

gMn

,

where gMi is a (d − k + t − 1) × k(d − k + t − 1)
matrix, i = 1, . . . , n, the block i can be computed as

TABLE 1
Comparison of different kinds of erasure codes for distributed storage

systems.

storage

overhead
network transfer
of reconstruction

disk I/O of
reconstruction

RS n

k
kt kt

MSR n

k

d

d−k+1
t dt

Beehive (n
k
, n

k−1
) d+t−1

d−k+t
t d

MDS Beehive n

k

d+t−1

d−k+t−1
t d

MSCR n

k

d+t−1

d−k+t
t d

gMi · [fT
1 cT1 · · · fT

k cTK]. In Fig. 7, we first expand A as
described in Sec. 4.2, and then construct GM by grouping
elements in G and AM alternatively like the construction of
Beehive codes.

This construction gives us non-systematic codes, as we
can see in Fig. 7. We can easily convert it equivalently into
systematic codes, using a technique applied in [7] and [15].
Given a generating matrix GM , we can convert it by calcu-
lating GM ·GM

0 where GM
0 contains the top k(d− k+ t− 1)

rows in GM . Hence, we can find an identity matrix at the top
of the result, making the corresponding codes systematic.
The codes converted in this way can be reconstructed in the
same way as the original codes.

5 DISCUSSIONS

5.1 Performance Analysis and Comparison

Now we compare the theoretical performance of Beehive
and MDS Beehive, with other erasure codes for distributed
storage systems including RS codes, MSR codes and MSCR
codes (though the existing constructions of MSCR are not
general). In the comparison, we assume that all blocks
computed by all these codes have the same size, containing
1 unit of data. Among all n = k + r blocks, any k blocks
can recover the original data. For all codes, we compare the
performance to reconstruct t blocks.

We summarize the results of the comparison in Table 1.
We can see that all erasure codes in this table, except for
Beehive codes, achieve the same optimal storage overhead,
since they are all MDS codes. Beehive codes, on the other
hand, increase the storage overhead to no more than n

k−1 .
Since in our comparison all n blocks contain n units of data,
Beehive codes can store less original data than MDS codes.

Among all codes in this table, RS and MSR codes recon-
struct blocks separately, and hence their network transfer
and disk I/O consumed during reconstruction increases
linearly with the number of blocks to reconstruct. MSCR
codes define the optimal network transfer to reconstruct
(k, r) MDS codes, and the disk I/O becomes irrelevant to
the number of reconstructed blocks. We can see that Beehive
codes and MDS Beehive codes coincide with the optimal
network transfer and the optimal storage overhead of MSCR
codes, respectively.

With the same system parameters, MDS Beehive codes
incur 1 + 1

d−k+t−1 times network transfer of MSCR codes
while achieving the same storage overhead, which can be
made close to 1 arbitrarily with a large enough d or t. With

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

practical values of system parameters, this overhead will
also be marginal.

5.2 Extensions

As we know, the construction of both Beehive codes and
MDS Beehive codes is developed based on the property of
interference alignment in (4). In fact, MSR codes that satisfy
this property does not only include PM-MSR codes. For
example, it can be proved that the construction proposed by
Suh et al. [23] can satisfy this property as well. However, this
construction requires that d ≥ 2k − 1, which is less general
than the PM-MSR codes. Hence, in this paper our construc-
tions are based on PM-MSR codes. The constructions with
MSR codes in [23] can be in a very similar way.

Moreover, the constructions of Beehive and MDS Bee-
hive codes can be extended by allowing newcomers to
choose different d available blocks as helpers. By revisiting
(6) and (18), we can find that any newcomer can solve gjF
(and hT

j ck with MDS Beehive codes), and the interference
components. Then newcomers will exchange the same data
even if they choose different helpers. Therefore, the recon-
struction is no longer limited to d helpers and newcomers
may connect to any d helpers, just like the MSCR codes
proposed in [12]. However, more disk I/O can be increased
when helpers chosen by different newcomers are not the
same.

Though we mainly consider the case of t > 1 throughout
the constructions of Beehive and MDS Beehive codes, we
can notice that they can still be constructed when t = 1.
At this time, Beehive codes will be equivalent as PM-MSR
codes, as C will contain no data in Fig. 5. On the other
hand, MDS Beehive codes will remain as MDS, but still incur
slightly more network transfer during reconstruction.

The most desirable extension of Beehive and MDS Bee-
hive codes, perhaps, is to combine their optimum together,
i.e., a construction of MSCR codes that achieve the optimal
storage overhead and the optimal network transfer during
reconstruction with a wide range of system parameters. We
know that our constructions are quite close to this objective.
However, it turns out non-trivial to merge this gap, and we
leave this problem as our future work.

6 EVALUATION

6.1 Evaluation settings

In our evaluation, we implement Beehive and MDS Beehive
codes in C++, following the discussions of the implementa-
tion in Sec. 3.3 and Sec. 4.3. Hence, all operations, including
encoding, decoding, and reconstruction, are implemented
as vector/matrix multiplications on a finite field of size 28.
We use the Intel storage acceleration library (ISA-L) [38] for
the finite field arithmetic. Beside Beehive and MDS Beehive
codes, we also implement RS and MSR codes with ISA-L,
for comparison purposes.

All evaluations are performed on Amazon EC2 instances
of type c3.xlarge, where we run operations of various era-
sure codes including RS, MSR, Beehive, and MDS Beehive
codes. All operations are running with one single thread.
We repeat each operation for 100 times, and plot the average
results.

Fig. 8. The total amount of network transfer to reconstruct t newcomers,
with d helpers (k helpers with RS codes).

By default, we set the block size to be 63 MB (except
in Sec. 6.8). We choose this size to make sure that the
block can always contain an integer number of segments
with different values of system parameters, encoded with
different erasure codes in our evaluations. Given the block
size and the value of k, we will generate one generation of
the original data randomly for corresponding erasure codes,
in order to make sure that all blocks with different erasure
codes will have the same size.

6.2 Network transfer

In Fig. 8, we compare the amount of network transfer
incurred by the reconstruction with t newcomers. With RS
codes and MSR codes, the t newcomers are reconstructed
separately, by downloading data from k and d helpers,
respectively. In all of our evaluations, we set k = 4, t = 3,
d = 7, and r = d + t − k by default, and change the values
of d and t respectively except in Sec. 6.8. We can observe
that Beehive codes achieve the minimum network transfer,
saving up to 23.8% of network transfer of MSR codes, and
up to 55.6% of RS codes. The saving of network transfer
becomes more significant with more newcomers. With an
increase of d, the network transfer can be slightly decreased
as well. MDS Beehive codes demonstrate similar network
transfer as Beehive codes. As expected, we can see that MDS
Beehive codes incur more network transfer than Beehive
codes. When t = 3, the network transfer of MDS Beehive
codes and MSR codes are roughly the same. With more than
3 newcomers to reconstruct, MDS Beehive codes will also
save more and more network transfer than MSR codes.

6.3 Disk I/O

Fig. 9 compares the total amount of disk read on helpers
to reconstruct t newcomers, where we use (MDS) Beehive
to represent both Beehive and MDS Beehive codes as they
consume the same amount of disk I/O on helpers. It is easy
to understand that (MDS) Beehive codes incur much less
disk read than both RS (by up to 70.8%) and MSR codes (by
up to 83.3%), because data reads, which will be incurred
multiple times with RS or MSR codes, can be coalesced to
be only once.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Fig. 9. The total amount of disk read on helpers to reconstruct t new-
comers.

R
S

B
e
e
h
iv

e
 (

d
 =

 7
)

B
e
e
h
iv

e
 (

d
 =

 8
)

B
e
e
h
iv

e
 (

d
 =

 9
)0.80

0.85

0.90

0.95

1.00

1.05

si
ze

 o
f

th
e

 o
ri

g
in

a
l
d
a
ta

 (
G

B
)

(a) t = 3

R
S

B
e
e
h
iv

e
 (

t
=

 4
)

B
e
e
h
iv

e
 (

t
=

 5
)

B
e
e
h
iv

e
 (

t
=

 6
)

(b) d = 7

Fig. 10. The size of the original data in a generation that can be encoded
into k blocks of size 63 MB.

6.4 Storage efficiency

As mentioned before, in our evaluations we assume that
all blocks with different erasure codes have the same size,
for the purpose of a fair comparison of all operations. Since
Beehive codes are not MDS codes, it can be expected that
the original data in a generation with Beehive codes will be
less than MDS codes.

In Fig. 10 we compare the size of the original data in a
generation with RS codes and Beehive codes. MSR and MDS
Beehive codes will have the same size of the original data
as RS codes since they are all MDS codes. With k = 4, we
can compute by (5) that Beehive codes can store at most 25%
less original data than MDS codes. In Fig. 10, we can observe
that the original data with Beehive codes is up to 13.9% less
than RS codes. By (5), we know that the original data with
Beehive codes contain t−1 fewer segments than MDS codes.
With a higher number of d, the total number of segments in
the original data will also increase, and hence the loss of
storage efficiency will be decreased. With more newcomers
to reconstruct, however, we can observe less original data
with Beehive codes since the gap will increase as well.

6.5 Completion time of reconstruction

The completion time to compute the data for reconstruction
is shown in Fig. 11 and Fig. 12. Different erasure codes com-
pute data differently during reconstruction. For example,
RS codes only need to compute the data at newcomers,
whereas MSR codes also require helpers to compute data for
the newcomer. With Beehive codes and MDS Beehive codes,
the operation at newcomers will be further divided into two
stages, computing the data for other newcomers and the

Fig. 11. Completion time of the reconstruction, with different numbers of
helpers

Fig. 12. Completion time of reconstruction, with different numbers of
newcomers

data we need to reconstruct. From Fig. 11 and Fig. 12, we
can see that Beehive codes and MDS Beehive codes achieve
similar performance as RS and MSR codes, with different
values of d and t.

6.6 Encoding performance

We measure the time to encode one generation of the
original data into k + r blocks with various erasure codes.
In Fig. 13, we find that Beehive and MDS Beehive codes
have similar performance of encoding, and their completion
time is slower than RS and MSR codes. We believe that
this is because both Beehive and MDS Beehive codes are
constructed by combining RS and MSR codes, increasing
the complexity to encode data. Intuitively, since MSR codes
have higher completion time of encoding with a large d,
implying that the encoding complexity increases with the
number of segments in a block, Beehive and MDS Beehive
codes will also have encoding complexity increasing with
d and t as the number of segments inside a block increases
with d and t as well, which we can also observe from Fig. 13.

6.7 Decoding performance

In the evaluation, we manually remove t data blocks and
recover the original data from k blocks, including the k − t
remaining data blocks and t parity blocks. Similar to en-
coding, we observe similar performance in the decoding as
Beehive and MDS Beehive codes spend more time to decode
the original data in a generation, as shown in Fig. 14. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Fig. 13. Completion time of encoding.

Fig. 14. Completion time of decoding the original data from k − t data
blocks and t parity blocks.

performance of Beehive and MDS Beehive codes suggests
that they are more suitable for archival storage with less
data access while the performance of the reconstruction is
of more importance.

6.8 Scalability

Fig. 15 and Fig. 16 show that the time of all operations with
Beehive codes and MDS Beehive codes linearly increase
with the size of the block. Hence, we can say that Beehive
codes and MDS Beehive codes can scale very well with
large files. The reason is that all operations with Beehive
and MDS Beehive codes are performed by vector/matrix
multiplications, and with more data we will only have the
matrix on the right (e.g., in (14)-(16)) with more columns.

7 CONCLUSIONS

In this paper, we propose Beehive, a new family of erasure
codes that reconstruct multiple blocks simultaneously and
achieve the optimal network transfer with near optimal
storage overhead. We further extend the construction of
Beehive codes to construct an MDS version of Beehive codes
that achieve the optimal storage overhead with marginally
more network transfer during reconstruction. Through eval-
uations on Amazon EC2, we show that Beehive codes and
MDS Beehive codes can both save network transfer and disk
I/O significantly, compared to existing erasure codes like RS
and MSR codes.

Fig. 15. Completion time of reconstruction with different block sizes, with
k = 4, d = 7, t = 3, and r = 6.

Fig. 16. Completion time of encoding and decoding with different block
sizes with k = 4, d = 7, t = 3, and r = 6.

ACKNOWLEGMENTS

We would like to thank our editor and anonymous re-
viewers for their efforts on improving the quality and the
presentation of this paper. This paper is partially supported
by the NSERC Discovery research program and the SAVI
NSERC Strategic Networks grant.

REFERENCES

[1] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” Proc. VLDB Endowment, 2013.

[2] D. Borthakur, “HDFS Architecture Guide,” Hadoop Apache
Project, http://hadoop.apache.org/common/docs/current/hdfs
design.html.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure Coding in Windows Azure Storage,” in
Proc. USENIX Annual Technical Conference (USENIX ATC), 2012.

[4] Z. Zhang, A. Wang, K. Zheng, G. Uma Maheswara, and
B. Vinayakumar, “Introduction to HDFS Erasure Coding
in Apache Hadoop,” http://blog.cloudera.com/blog/2015/09/
introduction-to-hdfs-erasure-coding-in-apache-hadoop/.

[5] K. Bandaru and K. Patiejunas, “Under the
Hood: Facebook’s Cold Storage System,” https:
//code.facebook.com/posts/1433093613662262/
-under-the-hood-facebook-s-cold-storage-system-/.

[6] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A Solution to the Network Challenges of
Data Recovery in Erasure-coded Distributed Storage Systems: A
Study on the Facebook Warehouse Cluster,” in Proc. 5th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage), 2013.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR
Points via a Product-Matrix Construction,” IEEE Transactions on
Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in Globally
Distributed File Systems,” in Proc. USENIX Symposium on Operat-
ing System Design and Implementation (OSDI), 2010.

[9] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W. Hsu,
“RAIDShield: Characterizing, Monitoring, and Proactively Pro-
tecting Against Disk Failures,” in Proceedings of the 13th USENIX
conference on File and Storage Technologies, 2015.

[10] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker,
“Total Recall: System Support for Automated Availability Manage-
ment,” in Proc. USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2004.

[11] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative Recovery
of Distributed Storage Systems from Multiple Losses with Net-
work Coding,” IEEE Journal on Selected Areas in Communications,
vol. 28, no. 2, pp. 268–276, 2010.

[12] K. W. Shum and Y. Hu, “Cooperative Regenerating Codes for
Distributed Storage Systems,” IEEE Transactions on Information
Theory, vol. 59, no. 11, pp. 7229–7258, 2013.

[13] J. Li and B. Li, “Cooperative Repair with Minimum-Storage Regen-
erating Codes for Distributed Storage,” in Proc. IEEE INFOCOM,
2014.

[14] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network Coding for Distributed Storage Systems,”
IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[15] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ram-
chandran, “Having Your Cake and Eating It Too: Jointly Optimal
Erasure Codes for I/O, Storage, and Network-bandwidth,” in Pro-
ceedings of 13th USENIX Conference on File and Storage Technologies
(FAST), 2015.

[16] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes
for Fault-Tolerant Network Storage Applications,” in Proc. IEEE
International Symposium on Network Computing and Applications
(NCA), 2006.

[17] V. R. Cadambe and S. A. Jafar, “Interference Alignment and
Degrees of Freedom of the K-User Interference Channel,” IEEE
Transactions on Information Theory, vol. 54, no. 8, pp. 3425–3441,
2008.

[18] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476–489, Mar. 2011.

[19] Y. Hu, P. P. C. Lee, and K. W. Shum, “Analysis and Construction
of Functional Regenerating Codes with Uncoded Repair for Dis-
tributed Storage Systems,” in Proc. IEEE INFOCOM, 2013.

[20] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Explicit Codes Minimizing Repair Bandwidth for Distributed
Storage,” in IEEE Information Theory Workshop on Information Theory
(ITW), 2010, pp. 1–5.

[21] S. Goparaju, A. Fazeli, and A. Vardy, “Minimum Storage Regener-
ating Codes for All Parameters,” arXiv preprint arXiv:1602.04496,
2016.

[22] N. Shah, K. V. Rashmi, P. Kumar, and K. Ramchandran, “Inter-
ference Alignment in Regenerating Codes for Distributed Storage:
Necessity and Code Constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134–2158, 2012.

[23] C. Suh and K. Ramchandran, “Exact-Repair MDS Code Construc-
tion Using Interference Alignment,” IEEE Trans. Inf. Theory, vol. 57,
no. 3, pp. 1425–1442, Mar. 2011.

[24] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and
C. Suh, “Asymptotic Interference Alignment for Optimal Repair
of MDS Codes in Distributed Storage,” IEEE Transactions on Infor-
mation Theory, vol. 59, no. 5, pp. 2974–2987, 2013.

[25] Z. Wang, I. Tamo, and J. Bruck, “On Codes for Optimal Rebuilding
Access,” in Communication, Control, and Computing (Allerton), 2011
49th Annual Allerton Conference on. IEEE, 2011, pp. 1374–1381.

[26] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array Codes
With Optimal Rebuilding,” IEEE Transactions on Information Theory,
vol. 59, no. 3, pp. 1597–1616, 2013.

[27] E. En Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic,
“Repair-Optimal MDS Array Codes Over GF(2),” in Proc. IEEE
International Symposium on Information Theory Proceedings (ISIT),
2013, pp. 887–891.

[28] Y. Wang, X. Yin, and X. Wang, “MDR Codes: A New Class of
RAID-6 Codes With Optimal Rebuilding and Encoding,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 1008–
1018, May 2014.

[29] ——, “Two New Classes of Two-Parity MDS Array Codes With
Optimal Repair,” IEEE Communications Letters, vol. 20, no. 7, pp.
1293–1296, 2016.

[30] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A High-Rate MSR
Code With Polynomial Sub-Packetization Level,” in 2015 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2015,
pp. 2051–2055.

[31] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Progress on
High-Rate MSR Codes: Enabling Arbitrary Number of Helper
Nodes,” arXiv preprint arXiv:1601.06362, 2016.

[32] B. Sasidharan, M. Vajha, and P. V. Kumar, “An Explicit, Coupled-
Layer Construction of a High-Rate MSR Code With Low Sub-
Packetization Level, Small Field Size and All-Node Repair,” arXiv
preprint arXiv:1607.07335, 2016.

[33] A.-M. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing
Multiple Failures with Coordinated and Adaptive Regenerating
Codes,” IEEE International Symposium on Network Coding (NetCod),
2011.

[34] A. Wang and Z. Zhang, “Exact Cooperative Regenerating Codes
with Minimum-Repair-Bandwidth for Distributed Storage,” in
Proc. IEEE INFOCOM, 2013.

[35] J. Chen and K. W. Shum, “Repairing Multiple Failures in the
Suh-Ramchandran Regenerating Codes,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2013.

[36] N. Le Scouarnec, “Exact Scalar Minimum Storage Coordinated
Regenerating Codes,” Proc. IEEE International Symposium on In-
formation Theory (ISIT), 2012.

[37] K. W. Shum and J. Chen, “Cooperative Repair of Multiple
Node Failures in Distributed Storage Systems,” arXiv preprint
arXiv:1607.08322, 2016.

[38] “Intel Storage Acceleration Library,” https://01.org/intel%C2%
AE-storage-acceleration-library-open-source-version.

Jun Li received his B.S. and M.S. degrees from
the School of Computer Science, Fudan Univer-
sity, China, in 2009 and 2012. He is currently
with the Department of Electrical and Computer
Engineering at the University of Toronto, working
towards his Ph.D. degree. His research interest
focuses on large-scale distributed storage sys-
tems with erasure coding.

Baochun Li received his Ph.D. degree from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, in 2000.
Since then, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Bell Canada Endowed
Chair in Computer Engineering since August
2005. His research interests include large-scale
distributed systems, cloud computing, peer-to-
peer networks, applications of network coding,

and wireless networks. He is a member of the ACM and a fellow of the
IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2016.2623309

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

