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Abstract—Data centers store a massive amount of data in a large number of servers built by commodity hardware. To maintain data

integrity against server failures, erasure codes have been extensively deployed in modern data centers to provide a higher level of

failure tolerance with less storage overhead than replication. Yet, compared to replication, disseminating erasure-coded data from a

source server into multiple servers will also take significantly more time.

In this paper, we design and implement Mist, a new mechanism for disseminating erasure-coded data efficiently to multiple receiving

servers (receivers) in data centers. Mist speeds up the dissemination process by building an efficient topology among the receivers

with heterogeneous performance, so that coded data can be received from other receivers in a pipelined fashion, rather than directly

from the source. Mist flexibly supports a wide range of erasure codes, without imposing constraints to the range of system parameters,

and can be extended for specific erasure codes with better performance by taking advantage of the corresponding erasure code. We

have implemented Mist in Python, and our experimental results in Amazon EC2 have demonstrated that the dissemination time can be

reduced by up to 96.3% with different kinds of erasure codes.

✦

1 INTRODUCTION

AN enormous amount of data have been stored in
distributed storage systems, such as Google File

System (GFS) [1] and Hadoop Distributed File Sys-
tem (HDFS) [2], inside data centers. For example, Facebook
stores at least 300 PB of Hive data inside its data centers,
increasing by 600 TB per week [3]. These data are stored on
servers built by commodity hardware, and frequent failures
can be expected even on a daily basis [4]. To maintain high
data availability against server failures, data are typically
replicated across multiple servers or even across different
racks. For example, three copies are stored (i.e., 3-way repli-
cation) in HDFS [2] by default. This way, failures of servers
or even rack switches will not affect data availability.

Naturally, storing multiple copies of the original data
incurs heavy storage overhead in data centers. To save
storage overhead while maintaining the same level of data
availability, erasure codes have been deployed by some
large-scale distributed storage systems [5], [6], with Reed-
Solomon codes as the most common choice.

An (n, k) Reed-Solomon code encodes k units of original
data into n units of coded data, in which any k units can
recover the original data. To maximize the ability to tolerate
failures, they are disseminated into n different servers. This
way, Reed-Solomon codes can significantly save storage
overhead while tolerating the same number of server fail-
ures. For example, to tolerate any 2 server failures, three
copies must be stored (i.e., 3x storage overhead) while a
(6, 4) Reed-Solomon code only requires 1.5x storage over-
head.

In this paper, we study the overhead to disseminate
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Fig. 1. Data dissemination of replication and Reed-Solomon codes.

erasure-coded data from a source server into multiple
servers in the distributed storage system. Comparing with
replication, writing data into distributed storage systems
with erasure coding can incur much higher overhead than
writing replicated data. We use HDFS as a use case to
explain this overhead. When data are written from a source
server into receiving servers (also known as datanodes in
HDFS), HDFS will build a pipeline among receivers, and
the source will only need to send data to one of the re-
ceivers [2], which will relay the received data to another
receiver, as shown in Fig. 1(a). If we assume that all servers
are connected to a switch with 1 Gbps links, it will then
take 2 seconds to write 256 MB of data into all three
receivers. However, if the data need to be encoded with
a (4, 2) Reed-Solomon code as shown in Fig. 1(b), each
receiver should download 128 MB of data from the source
in dependently, which can be fininshed in 4 seconds as
the outgoing link at the source will be shared by the four
receivers now. Therefore, we can see that the outgoing link
of the source becomes the bottleneck of the dissemination.
As existing production storage systems that use erasure
codes all ask their receivers to download data from a single
source directly [5], [7], the time it takes to disseminate
erasure-coded data in sucn systems should increase linearly
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with the number of receivers.
To save the time of disseminating erasure-coded data, we

propose and implement a new data dissemination system,
referred to as Mist. Mist eases the burden at the source, by
minimizing the number of receivers that directly contact it,
and letting other receivers be allowed to compute their de-
sired data from data on these receivers instead of the source.
We illustrate one example in Fig. 2 that we disseminate 256
MB of data with a (4, 2) Reed-Solomon code, where we let
only 2 receivers contact the source directly. Other receivers,
at the same time, will obtain data from the first 2 receivers
and compute their desired data on their own. The first
two receivers will pipeline their data to their downstream
receivers, such that the other two receivers can compute
their desired data and finish the dissemination (almost)
simultaneously with the first two receivers. Therefore, the
time to finish the dissemination can be saved to just 2
seconds, the same as disseminating the replicated data.

Fig. 2. An example of disseminating data coded by a (4, 2) Reed-
Solomon code in Mist.

In general, Mist is designed to work with any erasure
code in any distributed storage systems. Mist minimizes the
number of receivers that download data directly from the
source to alleviate its bottleneck. To disseminate data to all
receivers, we build a pipelining topology such that they are
allowed to get their desired data from other receivers. We
carefully control the traffic going out of any servers in the
pipelining topology to avoid any additional bottleneck. Our
construction of such a topology can work for a wide range of
erasure codes in general, which can also support to dissemi-
nate hybrids of both replications and erasure-coded data. In
Mist, we provide a flexible mechanism to extend its support
to even more erasure codes with their specific topology
constructions. Besides the general construction, we propose
specific topology constructions of two representative kinds
of erasure codes in data centers, taking advantage of the
corresponding erasure code to save time and even network
traffic consumed during dissemination. If the performance
of receivers are heteogeneous, Mist can even carefully place
the receivers into best positions in the topology in order to
minimize the time to finish the dissemination.

We have implemented Mist in Python and evaluated it
with Amazon EC2. We have shown that with Mist, dissem-
inating erasure-coded data becomes much less sensitive to
the number of receivers. Because of the pipelining topology
with carefully controlled out-going traffic, the dissemination
time can be very close to the theoretical minimal amount of
time to disseminate just the original data. In this way, we
can significantly save the time used to disseminate erasure-

coded data by up to 96.3% with different kinds of erasure
codes.

2 OVERVIEW OF Mist

The goal of Mist is to provide a general framework to reduce
the time of disseminating erasure-coded data in the data
center. As shown in Fig. 2, Mist minimizes the number of
receivers that contact the source directly and lets other two
receivers reconstrcut their desired data from such receivers.
When we have more than 4 receivers, however, the 2 re-
ceivers that contact the source directly will become new
bottlenecks as all other receivers obtained data from them.
In Mist, we build multi-level topologies for any number
of receivers incurring no more bottleneck anywhere in the
topology, that not only works with Reed-Solomon codes,
but with almost all erasure codes in general. In other words,
the receivers in the topology will be placed into different
levels such that all receivers in any level will obtain data
from receivers in another level closer to the source. Besides
a topology construction for erasure codes in general, we also
propose specific topology constructions of local reconstruc-
tion codes [5] and minimum-storage regenerating codes [8],
two representative kinds of erasure codes designed for
storage systems in data centers, by taking advantage of their
own properties.

Fig. 3. The architecture of Mist.

Fig. 3 shows the architecture of Mist. In Mist, a group
contains one source and multiple receivers. The topology
manager in Mist is responsible for generating the topology
of the corresponding erasure code. All receivers will con-
nect to other receivers or to the source according to the
topology. The topology will also instruct the behavior of the
source and each receiver by implementing two functions:
encode() to compute erasure-coded data at the source and
repair() to compute coded data from other coded data
at the receiver. This way, each receiver will compute its
desired unit from the source or from other receivers, store
the corresponding units to local disks, and meanwhile, send
them to other receivers in the next level of the topology.
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When there are multiple Mist groups running in parallel,
the topology manager does not run in a centralized manner.
Instead, the source in each group will run its own instance of
the topology manager to construct the pipelining topology
of its own group, such that we can to a large number of
groups Mist.

To streamline the transmission, each server will not
compute the entire unit of coded data directly, but build a
pipeline by dividing them into stripes, each with a fixed
size. Once a stripe has been computed, the server will
send it immediately to downstream receivers. There may
be a trade-off in choosing the stripe size, because a larger
stripe will increase the computational delay between two
consecutive levels in the topology, while a small stripe will
lead to a low throughput of encoding operations [9]. In
our forthcoming experiments, we will evaluate how various
choices of the stripe size affect the dissemination process.

In the rest of the paper, we will focus on the topology
construction of different erasure codes. We start with a
construction of general erasure codes in Sec. 3. Moreover,
Mist provides a flexible mechanism to specifically construct
topologies of any particular erasure codes. To implement a
new topology for a certain erasure code in Mist, we only
need to implement the construction of such a topology and
the corresponding encode() and compute() functions.
With this flexible mechanism, we consider designs of topolo-
gies for specific erasure codes in Sec. 4, by taking advantages
of their own properties. In Sec. 3.3, we show that Mist can
also build a pipelined topology to disseminate replicated
data along with erasure coding.

3 TOPOLOGIES FOR GENERAL ERASURE CODES

3.1 General requirements of erasure codes in Mist

Typically, an erasure code in a distributed storage system
contains two system parameters n and k, k < n. An (n, k)
erasure code encodes the original data into n units of a
fixed size, where any k units can be decoded to recover
the original data. If k units of coded data contain the same
size of the original data, such erasure code achieves the
optimal storage overhead with the same failure tolerance.
As an instance, Reed-Solomon (RS) codes achieve such
optimality. Moreover, if there exist k blocks of coded data
that exactly embed the original data, such erasure codes are
called systematic codes. The units that contain the original
data is also known as the systematic units. In other words,
the original data can be directly accessed without any de-
coding operations, promising a better read throughput in
the storage system. The RS code illustrated in Fig. 2 is an
example of (n = 4, k = 2) systematic erasure codes, with
four units of coded data, i.e., A, B, A + B, and A + 2B. It
is easy to verify that A and B can be decoded from any two
units of coded data.

In Mist, we do not require the optimal storage overhead
or systematic codes as we construct topologies for erasure
codes in general. We only require that 1) data are encoded
into n units of a fixed size; 2) any k units of coded data can
recover the original data. We believe that such assumptions
are valid for a very wide range of erasure codes used
in distributed storage systems. However, the topology can

achieve better performance if the erasure code is optimal in
terms of the storage overhead or is systematic.

3.2 Topology design

Given an (n, k) erasure code, we can compute any one unit
of coded data from any other k units. For example, with
the RS code shown in Fig. 2, if a server can get A and B
(without decoding operations in this case since this RS code
is systematic, otherwise after decoding any two units if this
RS code is not systematic or there is at least one non-original
unit in these two units), then it can encode these 2 units
again to compute A+B or A+2B. We refer to this operation
as repair, as in distributed storage systems the repaired data
replace the old data when they are not available.

As described above, the repair of any unit of coded
data requires decoding and re-encoding, i.e., decoding ex-
isting units of coded data to get the original data, and
then encoding the original data again to get the desired
unit.1 Therefore, if a receiver is going to repair one unit
of coded data, it can also behave like a source to serve
other receivers because it needs to recover the original data
anyway. Following this intuition, we can build a topology to
disseminate erasure-coded data to multiple servers without
incurring a bottleneck at the source.

We show the topology construction through an example
of the topology built for an (8, 2) erasure code in Fig. 4.
Without loss of generality, we assume that receiver i needs
block i, i = 1, . . . , 8, and we show the corresponding block
beside each edge in Fig. 4. We build a multi-level topology to
disseminate the coded data without incurring a bottleneck
at the source server or any receiver. In order to compute one
unit from other units of coded data, we need to have at least
2 units of them. Hence we place two receivers (receiver 1
and 2) at the first level in this topology. With these two
receivers, all the other receivers can repair their desired
units without visiting the source directly. On the other hand,
adding any more receivers into the first level will decrease
the incoming throughput of each receiver. Hence, we can
place at most two receivers at the first level in this example.
Since the repair operation always incurs encoding overhead,
we can put the 2 receivers with the systematic units at the
first level if the (8, 2) erasure code is systematic, such that
the encoding overhead at the source can be saved.
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Fig. 4. The topology of an (8,2) erasure code in Mist.

Now that we have put two receivers into the first level,
we can ask them to forward received data to receivers put in

1. There exist erasure codes that can directly compute other units of
coded data without decoding. We do not consider this property for
now, in pursuit of generality.
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the second level, which repair their own data from the first
two units. However, if we put too many receivers into the
second level, the first two receivers will need to send out too
many data and incur a new bottleneck of the network. How
many receivers can we put into the second level at most? We
know that a receiver needs to contact two servers to repair
its desired data, and thus each receiver at the second level
needs to contact both two receivers at the first level. Notice
that both the source and the first two receivers send out one
unit of coded data to each of their downstream receivers.
Since the source is serving two servers, the two receivers
should serve at most two other receivers as well. In other
words, we can have two receivers in the second level.

However, the two receivers at the second level (receiver
3 and 4) can serve more receivers at the third level, because
different from receiver 1 and 2 that receive their desired
units directly from the source, receiver 3 and 4 repair their
desired data from data downloaded from their upstream
receivers. In other words, they can decode the original data
and thus behave like a source for any receivers at the third
level. In this way, we can have four receivers at the third
level so that both receiver 3 and 4 serve two receivers.

If there are even more receivers in the dissemination
group, we can follow the way described above to add more
levels into such a topology. For example, in the fourth level,
there can be still at most four receivers, since they need
to repair their data by contacting receivers at the third
level. Then they will send units of coded data to at most 8
receivers at the fifth level, and so on. Notice that we strive to
balance the workload of receivers by assigning the upstream
receivers in a round-robin manner, as shown in Fig. 4.

Similarly, we can have a general construction to build
the topology of (n, k) erasure codes. The general idea is to
add only k receivers — the theoretical minimum number of
receivers from which other units can possibly be repaired
— at the first level and let k more receivers be placed at
the second level to compute their desired data. Then we
will have k2 receivers at the third and fourth level, and k3

receivers at the fifth and sixth level, etc. This way, we can
build a topology of an (n, k) erasure code with any valid
choices of parameters. The complexity of this method is
linear to the number of receivers.

In fact, considering that the practical value of n will be
no more than a few times of k, the depth of such topologies
will also be limited. For example, if n ≤ 2k, the constructed
topology will have at most 2 levels of receivers. Only one
more levels will be added if n is more than 2k but no more
than 2k + k2. Since k ≥ 2, three levels of receivers will
be enough for no more than 4k receivers. When n = 4k,
the minimum storage overhead (e.g., with RS codes) is 4x,
which is probably enough for most scenarios in distributed
storage systems in current data centers.

The topology constructed with this method can reduce
the computational overhead at the source to the theoretical
minimum, as it only needs to encode k units of coded data.
Even better, there is no such overhead when the erasure
code is systematic. On the other hand, receivers at the even
levels in the topology will need to decode and re-encode
data. In distributed storage systems, most erasure codes are

linear codes2 such that all operations can be applied by
linear operations. Linear erasure codes can directly repair
one unit of coded data from any other k units without
decoding. Typically, these receivers need to repair k units
of coded data to their downstream receivers, incurring the
same computational overhead as the source. Receivers at
the odd levels will only need to send their received data
to their downstream receivers, with very little additional
computational overhead.

3.3 Disseminating erasure-coded data with replica-

tions

Though erasure codes provide a higher data availability
against server failures with much less storage overhead
than replications, it is hard to offer a high read throughput
with erasure codes under a high volume of workload. Even
though systematic erasure codes can exempt the storage
system from decoding, all requests will then be directed to
the servers that store the original units. Therefore, it is hard
to do load balancing with erasure codes. Currently in the
real world, distributed storage systems that deploy erasure
codes may also store replications with erasure coded data,
and migrate replications into more erasure-coded data as
the data becomes cold [10].

In this section, we present a design of topology con-
struction in Mist, extended from the topology constructed
for erasure-coded data only, to disseminate erasure-coded
data along with replications. This design can not only dis-
seminate a mix of both erasure-coded data and replications
quickly, but save the system from disseminating unneces-
sary copies as well.
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Fig. 5. The topology to disseminate a systematic (8,2) erasure code with
2-way replication of the original units. While replicating the original units
at the first two levels, all other (i.e., parity) units are disseminated in the
same way as the topology for general erasure codes.

Suppose that we have a systematic (n, k) erasure code,
and we need to have an r-way replication of each original
unit. Notice that we can disseminate replications by simply
asking receives to relay its copy to one another. We apply
this principle into our topology design, as shown in Fig. 5
where we need to have a 2-way replication of all origi-
nal units. Comparing with Fig. 4, we add one more level
between the source and the first level of receivers, where
receivers can the relay original units to the receivers, which
now are at the second level. In this way, we can add as many
levels as necessary to replicate any number of units for any
number of times.

2. For example, RS codes, along with the other erasure codes men-
tioned in this paper, are all linear codes.
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If the erasure code is not systematic, on the other hand,
we can still insert the original units into the first r levels
similarly, as they can always repair any parity units.

This method works for the topology of any erasure codes
supported in Mist, including those presented in Sec. 4 as
well. Once we have a topology constructed for an erasure
code and some units need to be replicated, we can add
additional receivers above the corresponding receivers and
let them store and relay received data to their following re-
ceivers. This way, any topology can be extended to replicate
any units of coded data in it.

4 TOPOLOGIES FOR SPECIFIC ERASURE CODES

In this section, we present topology constructions that are
designed for specific erasure codes in distributed storage
systems. Compared with the topology constructed for gen-
eral erasure codes, we take advantage of code structures of
specific erasure codes in these constructions, to save the time
of dissemination, and network traffic, or CPU overhead as
well.

4.1 Local reconstruction codes

Local reconstruction codes, which are deployed in Windows
Azure Storage [5], save disk I/O during repair by adding the
“locality” into erasure codes, such that most units of coded
data can be repaired from a small number of some other
units. Thus, only a small number of servers that store these
units will be visited and thus incur low disk I/O during
repair, without bothering any other servers.

Fig. 6. An example of (6,2,2) local reconstruction codes, with 6 original
units, 2 local parity units and 2 global parity units.

Fig. 6 shows an example of local reconstruction codes
(LRC). Supposing that we already have an (8, 6) systematic
RS code, which computes 6 coded units containing 6 origi-
nal units and two parity units, we add two more parity units
computed from each 3 original units with a (4, 3) systematic
RS code. In local reconstruction codes, the parity units of the
(8, 6) RS code is called global parity units, while the two ad-
ditional units are called local parity units. This way, we build
a (k = 6, l = 2, g = 2) local reconstruction code, where k, l,
and g represent the number of original/systematic units,
local parity units, and global parity units, respectively. If any
original unit or local parity unit is lost, it can be repaired by
accessing only three units rather than six units. For example,
to repair a1, we just need to obtain a2, a3 and a4, and then
compute a1 with the (4, 3) RS code, rather than decoding 6
units (such as a2−a3, b1− b3 and c1) with the original (8, 6)
RS code. This way, the disk I/O overhead can be saved by
visiting fewer servers when repairing most units of coded
data (except global parity units). Notice that though we can
decode many combinations of 6 units, not every 6 units are
sufficient to recover the original data.

As described above, a (k, l, g) local reconstruction code
makes it possible to repair a local parity unit from k

l
units.

However, they must be computed from a specific combina-
tion of units. Fortunately, local parity units are all computed
from original units instead of global parity units. Therefore,
to construct the pipelining topology for local reconstruction
codes, we can put original units in the first level and then
repair local parity units at the second level. Since the k origi-
nal units are the smallest combination of units to recover the
original data, the source achieves the theoretical maximum
throughput to each receiver at the first level. Receivers of
local parity units, at the second level, are going to download
the corresponding original units. Since each original unit is
used to compute only one local parity unit, each receiver of
the original unit serves just one receiver so far. Compared
with the topology constructed for general erasure codes,
these receivers only need to receive k

l
units. Thus, network

traffic can be saved, and the computational overhead can
also be reduced as the RS code used is smaller.

Since the source serves k receivers at the first level, we
can consider that all receivers have a capacity to serve at
most k downstream receivers without incurring any new
bottlenecks. To disseminate global parity units, we first ex-
ploit the remaining capacity of the receivers at the first level,
since they have served only one receiver. Since erasure codes
require that k is at least 2 (otherwise they are equivalent
to replications), the source and receivers at the first level
can serve at least two receivers. Thus, each receiver at the
first level has a remaining capacity of at least one receiver.
Therefore, we can repair at least one global parity unit at
the third level, except that this receiver needs to contact the
k receivers at the first level. Fig. 7 shows an example of
the dissemination with a (4, 2, 1) local reconstruction code
where the global parity unit is being computed at the third
level.
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Fig. 7. The topology of a (4, 2, 1) local reconstruction code constructed
in Mist, where there are 4 original units, 2 local parity units and 1 global
parity unit to disseminate. Dashed lines represent the connections to
disseminate local parity units, and other lines represent the connections
to disseminate original units and the global parity unit.

In summary, in (k, l, g) local reconstruction codes, the
k receivers at the first level will serve l receivers of the
local parity units at the second level. At the third level, we
can have most k − 1 receivers to repair their global parity
units. If there are more global parity units to disseminate,
the receivers at the third level can behave like a source to
other receivers at the fourth level, similar to the topology of
general erasure codes. In other words, we can have k(k− 1)
receivers at the fourth level at most, and the same number
at the fifth level as each of them needs to compute their
units by contacting k servers at the fourth level. Similarly,
we will have k2(k − 1) receivers at most at the sixth and
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seventh level, and so on until all g global parity units can be
computed.

4.2 Regenerating codes

Different from local reconstruction codes, the objective of
regenerating codes is to optimize the network traffic during
repair. Dimakis et al. [11] have revealed a lower bound
of network traffic to compute a unit of coded data from
d existing units (d ≥ k), with a general (n, k) erasure
code. In particular, if the erasure code achieves the optimal
storage overhead like RS codes, i.e., the size of a unit is just
1
k

of the original data, each of the d servers only needs
to offer 1

d−k+1 to the replacing server. The erasure code
that achieves such a repair property is termed as minimum-
storage regenerating (MSR) codes.3 There has been various
literature that discusses the construction of MSR codes (
[12] and the references therein). We can see that MSR codes
can achieve a significant reduction of network traffic during
repair, compared to both RS codes and local reconstruction
codes.

To disseminate an (n, k, d) regenerating code efficiently,
one challenge comes from the property of regenerating
codes that a unit of coded data can be repaired with low
network traffic consumption from d units, where d ≥ k.
If we let the source send the d units directly to receivers,
the throughput between the source and the receiver will be
compromised, which will further affect the throughput in
the downstream levels. We do not compromise the through-
put in our topology design by reserving the capacity of the
receivers involved.

When d = k, an (n, k, d) MSR code is equivalent to a
general (n, k) RS code. Therefore, we assume that d > k in
the following topology construction. In other words, if the
source serves only k receivers at the first level, there must be
at least one receiver missing before we can compute other
receivers by the repair property of MSR codes.

Notice that though an MSR code provides a bandwidth-
efficient method to repair a unit of coded data from d exist-
ing units (by the repair property), a unit can also be repaired
in the way like a general erasure code, by decoding k units
and re-encoding the decoded data into the corresponding
unit (which, for convenience, is referred to as the decodability
of the erasure code). In general, to take advantage of MSR
codes in the topology construction, we need to apply the
repair property on as many receivers as possible to compute
their corresponding units of data. In other words, we will
compute the first d units by decodability and compute all
the rest units by the repair property.

Similar to LRC codes, assuming that the source can send
k units to its downstream receivers, we define the capacity
of a server (a source or a receiver) to be the maximum
number of units it can send to its downstream receivers
without incurring any additional bottlenecks. We first build
a multi-level topology similar to the topology for RS codes,
to disseminate data to d receivers by the decodability of

3. There is another family of regenerating codes called minimum-
bandwidth regenerating (MBR) codes. The topology construction of
MBR codes can also be obtained in a way similar to MSR codes. Due
to the space constraints, we do not discuss the topology construction of
MBR codes in this paper.

the MSR code. However, we reserve x units in the capacity
of these d receivers, which will be used to compute other
receivers with the repair property. Since the capacity of all
receivers should be no more than k to avoid incurring any
additional bottlenecks, the value of x must be less than k.

Fig. 8. An example topology for an (8,4,6) minimum-storage regenerat-
ing (MSR) codes. The source sends just 4 units of coded data to the
receivers at the first level and then repair two more units in the receivers
at the second level by decoding and re-encoding. From the six receivers
at the first two levels, two other receivers can compute their desired data
by the repair property of regenerating codes.

Fig. 8 shows an example of disseminating data with an
(8, 4, 6) MSR code. With four receivers at the first level,
there are still two more receivers before we can repair data
at more receivers by the repair property. Thus, we let the
two receivers at the second level repair their units by the
decodability of this regenerating code, and meanwhile we
reserve two units of the capacity at each receiver in the first
level, i.e., x = 2. With these six receivers, we can start to
repair the desired data of the two remaining receivers by
the repair operation.

With the capacity of x units reserved at d receivers for
other receivers down in the topology, how many receivers
can be placed at each level? As there are k receivers at the
first level, there can be at most k − x receivers that contact
the k receivers at the first level to compute their units by
decodability, and they can also repair and send data to the
receivers at the third level. Thus, there can be at most (k −
x)2 receivers at the third level. Similarly, there can be at

most ⌊ (k−x)3

k
⌋ and (k − x)⌊ (k−x)3

k
⌋ receivers at the third

and fourth level, and so on, until the first d receivers have
been accommodated.

To compute data at the remaining n − d units by the
repair property, it is important to remember that a receiver
just receives 1

1−d+1 instead of the whole unit from each of
the d receivers, due to the repair property of the MSR code.
In other words, with the capacity of x units, a receiver can
actually serve x(d−k+1) receivers by the repair operation.

Suppose that the first d receivers are placed in the
first two levels, just like the example in Fig. 8. Hence,
the third level can accommodate at most x(d − k +
1) receivers, and the fourth level can have at most

⌊xk(d−k+1)2

d
⌋ receivers. Similarly, the fifth level can accom-

modate ⌊⌊xk(d−k+1)2

d
⌋k(d−k+1)

d
⌋ receivers at most, and so

on.

To construct the topology for an (n, k, d) regenerating
code, the value of x must be given in advance. However,
the value of x determines if such a topology exists or not.
We show, in the Appendix, that this topology is valid if and
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only if x ∈ [ d

d−k+1 , k −
√
k] for MSR codes. Rashmi et al. [8]

have shown that there exists no deterministic construction
of exact-repair MSR codes when d < 2k − 3. Therefore, in
most cases x (when k ≥ 4) we can simply take 2 as the value
of x. In the extreme cases that a valid value of x does not
exist (e.g., k = 3), we can just use the general construction,
to compute data at all receivers by the decodability.

5 Mist WITH HETEROGENEOUS SERVERS

So far, the design of the topologies are considered under
the assumption that the performance of all receivers are
homogeneous and the throughput of encoding at receivers
does not become a bottleneck. However, in a practical
cluster the performance of servers can often be heteroge-
neous. For example, it has been reported that servers in a
data center can have different hardware configurations [13],
leading to heteogenous performance when encoding data in
a Mist topology. Given the heterogeneous performance of
receivers, we cannot simply place receivers at any position
in the Mist topology. The reason is that receivers at different
levels in a Mist topology will need to encode data received
from different numbers of other receivers and serve different
numbers of other receivers, as we can see from all previous
examples. Therefore, a receiver with a low CPU perfor-
mance may encode data slowly and make itself become the
bottleneck in the whole topology. In this section we consider
the performance heterogeneity of receivers and assign them
to the best positions in the corresponding topology.

In this paper, we consider the topology for general
erasure codes only due to the space limit, and similar
mechanisms can be developed for local reconstruction codes
and regenerating codes as well. Given a Mist topology,
we first consider the complexity of the encoding at each
receiver by taking into account the number of incoming
flows and outgoing flows. Assume that a receiver need to
download data from Ni servers and No receivers download
data from this receiver, and then the data this receiver need
to compute can be represented as a matrix multiplication
by multiplying an (No + 1) × Ni matrix on the left of the
received data because the receiver will also need to calculate
its own desired data. Therefore, the encoding complexity is
O ((No + 1)Ni).

Assume that we have already the known the sequence
of the CPU performance of all receivers, we can then match
them to the corresponding position in the topology where
the receiver with the highest CPU performance should have
the highest encoding complexity and the receiver with the
lowest CPU performance should have the lowest encoding
complexity. It is easy to prove that this way can lead to
the maximum overall encoding throughput, as exchanging
the positions of any two receivers can lead to even lower
throughput.

6 IMPLEMENTATION

We have implemented Mist following the architecture
shown in Fig. 3, with 3000 lines of code in Python and 1000
lines of C++ code implementing a Python module of erasure
codes. We use the Intel storage acceleration library [14] to
implement the arithmetic operations of erasure codes in this

module. The source and the receiver are implemented as
standalone applications. When a group is started, the source
is going to utilize the topology manager to compute the cor-
responding topology. The topology manager is a class that
defines the interface to generate the topology for various
erasure codes. A topology manager for a specific kind of
erasure codes will inherit this base class to implement its
corresponding topology construction.

In order to avoid any potential bottleneck of the write
throughput in the hard disk, once a receiver has received or
repaired a stripe of its desired unit, we first save the data
into a buffer in the memory, and use another thread to keep
writing the data in the buffer into the hard disks as long as
the buffer is not empty.

We have currently supported RS codes, local reconstruc-
tion codes, and MSR4 codes in Mist, where the topology
construction of RS codes is built by the general topology
construction as described in Sec. 3, and other codes have
their own specific topology construction as described in
Sec. 4. Any erasure codes supported in Mist can also work
with replications, as described in Sec. 3.3.

To make sure that all receivers can receive all their
desired data, each receiver will notify the source when
they’ve received all the data successfully. The source will
exit successfully when it has received the notifications from
all receivers. On the other hand, the pipelining topology will
make all receivers receive all data almost at the same time.
Hence, we can set a timeout at the source such that a receiver
will be considered as failed if it does not finish after a certain
amount of time since the source finishes sending all data
to receivers. The source will also exit with an error code if
any TCP connection fails during transmission or any other
exception occurs. Therefore, the user only needs to check
the status of the source to detect failures in Mist. Once any
failure has been detected, the user can kill the corresponding
Mist group and restart by launching a new Mist group.

7 EVALUATION

7.1 Evaluation methodology

We have evaluated Mist in Amazon EC2. In each experiment
(unless mentioned otherwise), we create a given number of
EC2 nodes of type c4.xlarge (with 4 CPU cores on an Intel
Xeon E5-2666 processor and 7.5 GB of memory) in the same
availability zone. Each node will run one instance of the
source or the receiver in one group of the dissemination.
From various experiments with different configurations, we
have found that the performance, especially the dissemina-
tion time in Mist is rather stable. Therfore, the experimental
results are obtained by calculating the average result of 10
iterations, running on the same EC2 nodes. The standard
devation of the results in most cases is within 5% of the
average.

We measure the time spent and network traffic incurred
during the dissemination of erasure-coded data. We believe
that these two metrics are essential to the distributed storage
system as they determine the write performance of the sys-
tem. For the purpose of performance comparison, the legacy

4. The MSR codes implemented in Mist is constructed using the
product-matrix method proposed by Rashmi et al. [8].
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topology that all receivers download their data directly from
the source is also supported in Mist.

In a typical distributed storage system, such as HDFS,
the data are stored into multiple blocks with a fixed size.
Therefore, the original data contains 256MB (unless men-
tioned otherwise) in the experiment. In each experiment,
we launch Mist with one source and a given number of
receivers, randomly selected from existing EC2 nodes. The
experiment runs on Python 2.7.6 with the stripe size set to
be 1MB (unless mentioned otherwise).

7.2 Dissemination time
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Fig. 9. A comparison of the dissemination time of (n, 4) Reed-Solomon
codes, (n, 4, 6) minimum-storage regenerating (MSR) codes and (4, 2,
n - 6) local reconstruction codes (LRC), with the topology in Mist and
the legacy topology. The value of n indicates the number of receivers in
the dissemination.

Fig. 9 compares the total dissemination time of the
topologies in Mist with the legacy topologies. We can see
that the dissemination time of the legacy topology increases
with the number of receivers. In addition, the dissemination
time is bottlenecked by the encoding operation instead of
the outgoing bandwidth at the source, since with the same
amount of data going out of the source the dissemination
time of different erasure codes can vary. The topologies
built in Mist, on the other hand, can significantly reduce
the dissemination time (by up to 96.3%). Compared to
the legacy topologies, the dissemination time of all erasure
codes with Mist is very close to the theoretical minimum
dissemination time (0.89 seconds). Hence, with Mist the
dissemination time no longer increases significantly with the
number of receivers. The reason is that in our experiment,
the major contribution of dissemination time comes from
the network (as we elaborate in Sec. 7.3), which is now
related to only the size of original data, instead of all data
including original data and parity data. Additional delay in
the dissemination time comes from the computational delay
of processing stripes at receivers. Thus the dissemination
time will only increase slightly with the number of levels in
the topology.

In this experiment, we also incorporate another family of
erasure codes, called self-repairing homomorphic codes (HSRC)
and its construction of the pipelining topology [15] into
Mist. Though the purpose of this is to demonstrate the
extensibility of Mist instead of performance comparison,
HSRC codes achieve even lower dissemination time in Mist
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Fig. 10. A comparison of the dissemination time with original data of
different sizes, with (8, 4) Reed-Solomon codes, (8, 4, 6) minimum-
storage regenerating (MSR) codes and (4, 2, 2) local reconstruction
codes (LRC).

(except for a small number of receivers) because every unit
of coded data with HSRC codes can be computed from
two other units by XOR operations, leading to the lowest
computational delay in this experiment. In other words, the
performance of dissemination time in Mist can be affected
by the complexity of the erasure code itself.

As Fig. 10 shows, the dissemination time also increases
linearly with the size of the original data. This is easy
to understand as Mist decomposes the original data into
multiple stripes of a fixed size. Therefore, Mist can scale
well to disseminate very large volumes of data.

7.3 Analysis of the bottleneck in the pipeline

As data are transmitted through a pipeline in the topology,
the dissemination time in Mist will be bottlenecked by the
slowest component in the pipeline. To understand the bot-
tleneck, we analyze the throughput time of each component
in the pipeline. We decompose the pipeline into components
including the source, each receiver, as well as the network
that connect servers between two adjacent levels in the
topology. To compare the throughput time, we measure the
time of all data going through each component, where the
results are shown in Fig. 11. The topology we study in
Fig. 11 is built for an (11, 4) RS code, where we can find
similar results in topologies built for other erasure codes in
Mist.

The throughput time of each receiver is measured by
performing the repair function without sending/receiving
data through the network, i.e., all data that should have been
sent or received through the network in the pipeline are now
written into or read from memory. Similarly, we encode data
into memory on the source to measure its throughput time.
We also measure the network throughput time by launching
4 parallels TCP connections to send a total of 256 MB of
data from one server to another one, which is the maximum
amount of data going out of any server in this topology.
In Fig. 11, we also show the overall throughput time of
the whole topology, i.e., the dissemination time. We can see
that the network has caused the most significant throughput
time, much more than all other components in the topology.
In other words, the throughput of network dominates the
throughput of the whole topology, while the rest of the
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overall throughput time is contributed by the delay of other
components, mainly the time to process the first stripe in
each component. We can also see that receivers at the same
level in the topology have very similar throughput time, but
receivers at different levels can have different throughput
time. This reflects their different behaviors defined in the
topology. For example, receivers at the first level only need
to receive data from the source and relay data to the next
level, while receivers at the second level will also have to
decode received data to get their desired data, incurring
higher throughput time.

        overall 
    network
      source

 
 receiver 1
 receiver 2
 receiver 3
 receiver 4

 
 receiver 5
 receiver 6
 receiver 7
 receiver 8

 
 receiver 9
receiver 10
receiver 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
throughput time (seconds)

Fig. 11. A comparison of the throughput time of each component in the
pipeline, with (11, 4) Reed-Solomon codes.

7.4 Impact of the stripe size

Fig. 12 demonstrates the impact of the stripe size in the
pipeline. As a surprise, we find that the stripe size does
not have a significant impact on the overall dissemination
time in both the legacy topologies and those constructed by
Mist. Even though when the stripe size is too small (less
than 64 KB) or too large (more than 1 MB), the performance
of dissemination time will be slightly affected, any stripe
size in-between will provide similar performance with other
sizes. We also find that the topologies in Mist are more easily
affected by small stripe sizes.
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Fig. 12. The impact of the stripe size in the dissemination, with an (11, 4)
Reed-Solomon (RS) code, an (11, 4, 9) minimum-storage regenerating
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7.5 Network traffic

In this experiment, we measure the network traffic incurred
by Mist in the dissemination. Fig. 13 illustrates the results

of RS codes, MSR codes, and local reconstruction codes. As
for the same parameter, the same amount of traffic will be
consumed each time, data given in Fig. 13 are the results of
one run only.
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Fig. 13. The network traffic consumed in the dissemination of (12, 4)
Reed-Solomon (RS) codes, (12, 4, d) minimum-storage regenerating
(MSR) codes (d=6, 8, 10) and (4, 2, 6) local reconstruction codes (LRC).

In a legacy topology, each receiver just needs to down-
load its desired data from the source directly, and thus it
incurs the theoretically minimum amount of network traffic.
In the topology built by Mist, however, more traffic will be
expected since a receiver needs to repair its desired unit
with multiple units obtained from other receivers.

Therefore, to disseminate a (12, 4) RS codes, Mist will
require almost twice the amount of network traffic of that
in the legacy topology. However, this is much less than
the theoretical maximum value, as if all receivers except
the first k receivers repair their data from other receivers,
theoretically Mist is going to incur (8×4+4)/12 = 3 times of
the traffic incurred in the legacy topology. It is because in the
topology built in Mist for RS codes, we exploit the property
that any receiver that repair its data from other receivers
can also repair any other unit of coded data, and thus we let
such receivers behave like a source to its following receivers.
This way, we save a significant amount of network traffic in
the dissemination process.

As for the other two kinds of erasure codes, the network
traffic consumed in the dissemination can be further saved
since we take advantage of their repair properties from their
specific topology constructions. Local reconstruction codes
save a bit of traffic than RS codes (4.2%) as local parity units
needs a small number of original units to repair. MSR codes,
on the other hand, save much more traffic. With a higher
value of d, we can save more traffic in the dissemination.
The reason can be directly inferred from the repair property
of MSR codes, that the traffic consumed to repair one unit of
coded data with MSR codes decreases with d. Fig. 13 shows
that when d = 8, MSR codes can consume 15% less network
traffic than RS codes in Mist, and the saving increases to
21.4% when d = 10.

So far, we can see that though Mist incurs additional
network transfer, it can still save a significant amount of
dissemination time. From the construction of topologies in
Mist, we can know that the reason is that the traffic is
generated from multiple sources instead of one in the legacy
topologies, and hence the bottleneck at the outgoing link of
any server can be avoided.
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7.6 Disseminating erasure-coded data with replica-

tions

As Mist can support disseminating hybrids of erasure-coded
data with replications, we measure the dissemination time
of an (n, 3) RS code with an r-way replication of its original
units in Mist. Still, the legacy topology asks receivers to
download all units, including the replicated units, directly
from the source.
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Fig. 14. The dissemination time of a systematic (n, 3) RS coded data
with an r-way replication of original units, where the value of n indicates
the number of receivers of coded data in the dissemination, excluding
the additional receivers of replications.

Fig. 14 shows the comparison of the dissemination time
between Mist and the legacy topology. By adding one more
copy of each original unit (i.e., let r go from 2 to 3), Mist
will spend almost the same time, thanks to the pipelining
topology. On the other hand, the legacy topology will spend
roughly 2 more seconds for the additional replications.

7.7 Concurrent Mist groups

In this experiment, we measure the performance of dissem-
inating multiple files with Mist. As shown in Fig. 3, the
concurrent dissemination can be well handled by launching
multiple Mist groups. In the legacy topologies, only the
source needs to encode data while all receivers just need
to receive coded data from the source. However, in the
topologies constructed by Mist, receivers need to repair data
for other receivers. Moreover, with multiple groups running
at the same time, the network can be congested when
flows from different groups are conflicting with the same
physical link. Therefore, one may doubt if the performance
of Mist will decrease when we run multiple Mist groups
on the same server. In this experiment, we launch multiple
Mist groups where the source and receivers are randomly
selected from a given number of servers.

Fig. 15 shows the results of running various numbers
of Mist groups on 8 servers, where each group selects one
server as the source and all the rest servers as receivers.
Compared to the legacy topologies, topologies in Mist will
have a higher chance to be affected by the other groups. This
is because in the legacy topologies, the only bottleneck is
the source. If the source does not coincide, the performance
won’t be affected. Naturally, with the increase of the number
of groups, the chances of having multiple groups with the
same source also increases. Hence we can observe a slight
increase of dissemination time over an increasing number of
groups.

Topologies in Mist, however, have more chances to have
conflicts of CPU or network among different groups. In our
experiments, the source and receivers are always selected
from the same set of servers, to maximize the chance of
conflicts. With one more group, each server (except those
with no child in the topology) will have similar additional
amounts of outgoing traffic, as traffic are managed to be
evenly distributed to avoid additional bottlenecks. Hence,
we can see that the dissemination time of Mist topologies
increases almost linearly with the number of concurrent
groups. However, since the great saving of dissemination
time of the Mist topology, even though there are 8 con-
current groups, topologies in Mist still outperform legacy
topologies while there will actually be less concurrent writ-
ing on the same server in practice [16]. Notice that in Fig. 15
the dissemination time of different topologies can increase
with different paces when the number of concurrent groups
is increased. We believe that there exist opportunities to
design topology constructions in Mist that can achieve lower
dissemination time with multiple groups, which will be left
as our future work.
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Fig. 15. The dissemination time of multiple concurrent Mist groups
running with the same source and receivers, with (8, 4) RS codes,
(8, 4, 6) MSR codes and (4, 2, 2) LRC codes.

7.8 Heterogeneous servers

We now evaluate the performance of Mist running on
servers with heterogeneous CPU performance. In this exper-
iment, we have 10 receivers, where 8 of those receivers are
Amazon EC2 instances of type C4.xlage (with 4 CPU cores
on a Intel Xeon E5-2666 processor and 7.5 GB of memory)
and the other 2 receivers are of type m2.micro (with 1 CPU
core on an Intel Xeon Processor and 1 GB of memory). Our
measurement has also shown that the CPU performance of
m2.micro instances in EC2 is much slower than those of
type c4.xlarge. With this setting, it is easy to imagine that
the last 2 receivers are going to be the bottleneck if they
are assigned to the position in the topology with a heavy
workload. In this experiment, we launch a server as the
sender of type c4.xlarge and disseminate data with a (10, 8)
RS code. Following the topology design in Sec. 3, it is easy
to know that the topology will have eight receivers at the
first level that just relay data to the next level and the rest
two receivers at the second level that will repair their own
data from data forwarded from receivers in the first level. In
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other words, if the two receivers with low CPU performance
are placed at the second level, they will naturally become the
bottleneck because of their low throughput to reconstruct
their desired data.

3 3.5 4 4.5 5

time (seconds)

0

0.2

0.4

0.6

0.8

1
C

D
F

optimal placement
sequential placement

Fig. 16. The CDFs of dissemination time of the topology to disseminate
data encoded with a (10, 8) RS code, with and without the algorithm
proposed in Sec. 5.

In this experiment, we assume that the 8 c4.xlarge re-
ceivers are by default placed before the 2 m2.micro re-
ceivers. We run two different rounds with and without using
the algorithm proposed in Sec. 5 that place the receivers
into the topology by their CPU performance. We show the
distribution of the dissemination time by repeating each
round by 100 times. As shown in Fig. 16, we can see that
with the algorithm, the dissemination time can be improved
by 0.88− 1.34 seconds. In addition, we can also observe the
dissemination becomes more stable than without using the
algorithm. This is because that with lower overload, the two
receivers with low CPU performance will also work more
stable as they only need to forward data to the receivers in
the next level.

8 RELATED WORK

Erasure codes have demonstrated both advantages and dis-
advantages to store data inside data centers. One of its most
prominent advantages is to protect data against failures with
much lower storage overhead than replications [17]. As N -
way replication requires to store N copies of the original
data, many distributed storage systems [5], [6], [7] have
deployed or been in a transition to deploy erasure codes
inside data centers.

Though different kinds of erasure codes with different
system parameters are deployed in distributed storage sys-
tems, there exists a significant bottleneck when erasure-
coded data are to be written into the system. For example,
in Windows Azure storage [5], when data are to be written
as erasure codes, a server will be appointed as the source
which computes all coded data for all servers that will
actually store the coded data. Then all coded data will be
disseminated from the source into corresponding servers.
Even though deploying different erasure codes, all current
distributed storage systems store erasure-coded data, follow
such a manner [4], [5], [7], [18]. Naturally, this manner will
lead to an increasing of the time to write data into the system
with the number of receiving servers.

Distributed storage systems that store replications in the
data center do not suffer from this problem as a pipelining
method can be used to alleviate the bottleneck at the source.
For example, Google File System (GFS) [1] and Hadoop File
System (HDFS) [2] applies this method to build a pipeline in
which receiving servers can relay data to the next one while
receiving data. This method, however, cannot be applied to
write erasure-coded data into the data center.

To solve this problem, some specific erasure codes have
been proposed to build similar pipelines. RapidRAID [19],
for example, is a family of erasure codes which can be
built into a pipeline, so as to progressively generate coded
data in a decentralized manner. This leads to a constraint
on the constructed codes. For example, RapidRAID codes
are not systematic. Thus, to read the actual content from
coded data, the storage system that deploys such codes will
have to decode the coded data first, leading to a limited
throughput of read operations. Juarez et al. [20] focus on
the reduction of network traffic instead of the time with the
pipeline. These two kinds of erasure codes also require that
some servers have already stored replicated data and they
are both designed to disseminate coded data from existing
replications.

Another solution [15] creates a pipelined topology to
write data into servers. However, it still supports only one
kind of erasure codes with limited choices of parameters,
and also compromise the failure tolerance. Different from
these works, this paper proposes and implements a new
pipelined mechanism to disseminate coded data with gen-
eral erasure codes, with no requirement of existing replica-
tions, that saves the time to disseminate erasure-coded data
significantly.

To work universally with different distributed storage
systems, Mist needs to support different kinds of erasure
codes for distributed storage systems in data centers. Apart
from traditional erasure codes such as Reed-Solomon codes,
existing erasure codes designed for distributed storage sys-
tems can be roughly classified into two categories: locally
repairable codes [4], [5], [18] and regenerating codes [11],
[12]. They are proposed to reduce the consumption of disk
I/O and network traffic in the process to repair any lost
coded data inside data centers, respectively. Mist does not
rely on any specific kind of erasure codes, and offers a
mechanism to support different kinds of erasure codes in
general, with no constraint on their parameters. Moreover,
we support one family of erasure codes in each of these two
categories, i.e., local reconstruction code [5] and minimum-
storage regenerating codes [8].

9 CONCLUSION

In this paper, we have designed, implemented, and eval-
uated Mist, a new mechanism for disseminating erasure-
coded data to multiple servers in a data center. Mist al-
leviates the conventional bottleneck at the source server
in such dissemination processes, by building a pipelining
topology where receiving servers can be allowed to compute
their desired data from other receivers, rather than from
the source server directly. It provides a flexible general
topology to support different kinds of erasure codes, yet
with no constraints on the system parameters. As examples,
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we have designed specific topologies of two representative
types of erasure codes for data storage inside data centers,
taking advantage of their corresponding properties. Mist
can even disseminate erasure-coded data along with replica-
tions efficiently. We have implemented Mist in Python, and
our experimental results in Amazon EC2 have shown that,
with the topologies it constructed, the time to disseminate
erasure-coded data to multiple servers can be significantly
saved, and becomes much less sensitive to the number of
receivers.
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