
Parallelism-Aware Locally Repairable Code for Distributed Storage Systems

Jun Li
School of Computing and Information Sciences

Florida International University

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada

Abstract—Distributed storage systems store a substantial
amount of data in a large number of servers built with
commodity hardware. In order to protect data against server
failures, erasure coding has been deployed in many distributed
storage systems because of its low storage overhead. In par-
ticular, since disk I/O is, in many cases, a bottleneck in the
distributed storage system, locally repairable codes, have been
proposed that incur low volumes of disk I/O when reconstruct-
ing missing data after server failures. However, since original
data can only be read from specific servers, existing designs of
locally repairable codes suffer from limited data parallelism.
Besides, if the performance of servers is heterogeneous, slow
servers may become the bottleneck when accessing data in
parallel. In this paper, we propose Galloper codes, a novel
family of locally repairable codes, that achieve low disk I/O
during reconstruction and meanwhile extend data parallelism
from specific servers to all servers. Moreover, the amount of
original data in each server can be arbitrarily determined
based on the performance of corresponding servers. We have
implemented a prototype of Galloper codes on Apache Hadoop,
and our experimental results have shown that Galloper codes
can reduce the completion time of MapReduce jobs by up
to 42.9%, with a comparable performance as existing locally
repairable codes, in terms of disk I/O overhead, as well as
encoding and reconstruction overhead.
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I. INTRODUCTION

Distributed storage systems, such as Windows Azure Stor-
age [3] and the Hadoop distributed file system (HDFS) [29],
provide storage services with a substantial capacity by
storing data over a large number of commodity servers. Due
to the large number of such servers and their commodity
nature, it is common to observe failures of servers in
distributed storage systems [26], [22]. Therefore, it is critical
for distributed storage systems to maintain data availability
despite server failures.

Due to frequent server failures, distributed storage systems
must store redundant data, such that data can be obtained
from a subset of servers. In distributed storage systems,
redundant data are usually generated by replicating data on
multiple servers. For example, data are replicated three times
in HDFS by default, and thus any two servers failures can
be tolerated.

Comparing with replication, erasure coding can provide
the same level of failure tolerance with much less storage
overhead and thus it has been deployed in many practical

distributed storage systems [11], [2], [32], [36], [5]. Taking
Reed-Solomon codes — the most common choice — as an
example, with a (k, r) Reed-Solomon code which takes k
blocks of original data (data blocks) as input and computes
r blocks of parity data (parity blocks) as output, we can
get all original data from any k among the total k + r
blocks. Typically, such k+ r blocks are placed on different
servers to maximize the tolerance to failures, and hence
any r server failures can be tolerated. Therefore, we can
tolerate any two server failures with either 3-way replication
or a (4, 2) Reed-Solomon code. However, the (4, 2) Reed-
Solomon code incurs only 1.5x storage overhead while 3x
storage overhead is required by 3-way replication.
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Figure 1. A comparison of disk I/O during reconstruction between a Reed-
Solomon code and a locally repairable code, where we use white and gray
blocks to present data blocks and parity blocks, respectively.

However, Reed-Solomon codes can incur high volumes of
disk I/O when unavailable data need to be reconstructed after
a server failure. As shown in Fig. 1a, with a Reed-Solomon
code, when a block A becomes unavailable, we cannot
directly reconstruct it by copying one of its copies as with
replication, since there is no any copy of A among existing
blocks. Instead, we need to download four other blocks from
existing servers, even though there is only one block to
reconstruct. Since disk I/O is the performance bottleneck
in many cases, alternative designs of erasure codes, called
locally repairable codes have been proposed such that a
block can be reconstructed from a small number of other
blocks. In Fig. 1b, we show an example of locally repairable



codes1, that can tolerate the same number of failures as
the Reed-Solomon code in Fig. 1a. Nevertheless, we can
reconstruct the same block from just two blocks, saving 50%
disk I/O by just adding two additional parity blocks.

Although locally repairable codes can save storage over-
head as well as disk I/O overhead during reconstruction, it
still limits data parallelism of data analytical jobs running on
corresponding data as other conventional erasure codes [14].
Typically, a data analytical job takes advantage of data
parallelism by running multiple tasks on different servers
at the same time, and these tasks are usually scheduled to
run on servers where the corresponding input data are stored.
Therefore, comparing with replications where parallel tasks
can run on all servers that store copies of the data, the
parallelism of erasure coding cannot be extended to servers
that store parity blocks unless additional network transfers
are allowed. As shown in Fig. 2a, assume that we are running
a MapReduce job over the data encoded by the locally
repairable code in Fig. 1b. If the input data are stored in
a distributed storage system, e.g., in HDFS, the number of
map tasks of a MapReduce job depends on the number of
available data blocks, and such map tasks will be scheduled
to run on the servers that store those blocks. However, as
it is difficult to run general functions on parity data, we
cannot directly run map tasks on parity blocks. Therefore,
we can only run map tasks on data blocks no matter how
many parity blocks we have.
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Figure 2. A comparison of data parallelism between locally repairable
codes and Galloper codes, where we still use white and gray color to
represent the original and parity data.

Existing work such as the Carousel code [14] has con-
sidered data parallelism by placing original data evenly
on all servers. However, Carousel codes have two major
drawbacks. First, a high volume of disk I/O will still be
incurred during reconstruction with Carousel codes. Second,
as multiple hardware configurations of servers exist in a typ-
ical data center [24], performance heterogeneity of servers

1This example is a Pyramid code, a particular family of locally repairable
code proposed by Huang et al. [12]. An improved construction of Pyramid
codes has been implemented in Windows Azure Storage [11]

in a distributed storage system is common, and thus evenly
placing original data on all servers can lead to additional
bottlenecks on slower servers.

In this paper, we propose Galloper codes, that can extend
data parallelism from data blocks only to all blocks, while
still maintaining the same properties of existing locally
repairable codes during reconstruction. Different from con-
ventional erasure codes, Galloper codes carefully embed
original data into all blocks such that parallel tasks can be
launched on any servers that store coded blocks. Moreover,
we have also considered the performance heterogeneity of
servers. In Fig. 2b, with Galloper codes, we can arbitrarily
determine the amount of original data placed on all servers,
based on the performance of the corresponding server.

We have implemented Galloper codes in C++ and devel-
oped a prototype with Apache Hadoop. Our experimental
results show that Galloper codes can significantly improve
the performance of data analytical jobs running on the coded
data, while still maintaining desirable properties of locally
repairable codes.

II. RELATED WORK

In many distributed storage systems, Reed-Solomon codes
have become a popular choice to generate redundant data
and then tolerate potential failures [11], [2], [32], [36], [5].
In fact, Reed-Solomon codes achieve the optimal storage
overhead to tolerate the same number of failures, as they are
maximum distance separable (MDS) in coding theory [23].
However, (k, r) Reed-Solomon codes require k blocks to re-
construct just one block, incurring high volumes of network
transfer and disk I/O. Therefore, various codes have been
proposed to mitigate such overhead during reconstruction.

Dimakis et al. first proposed regenerating codes that opti-
mize the network transfer during reconstruction [7]. Among
the family of regenerating codes, there exists a tradeoff
curve between storage overhead and network transfer during
reconstruction. The two ends of such curve are termed as
minimum-storage regenerating (MSR) codes and minimum-
bandwidth regenerating (MBR) codes, respectively. Different
from Reed-Solomon codes, regenerating codes require to
contact more than k blocks to reconstruct an unavailable
block, where each block only needs to offer a fraction of its
data. Assuming that d existing blocks are required during
reconstruction, d ≥ k, and r failures need to be tolerated,
Rashmi et al. have proposed constructions of MBR codes
(k ≤ d < k+ r) and MSR codes (2k−2 ≤ d < k+ r) [21].

However, regenerating codes in general suffer from even
higher disk I/O than Reed-Solomon codes. The reason is
that even though a fraction of each block is required,
such a fraction usually must be computed from the whole
block. Therefore, at least k blocks must be read on the
corresponding servers since d ≥ k. Although there exist
regenerating codes that are efficient in disk I/O, the con-
structions of such regenerating codes are usually limited to



specific combinations of parameters [28], [27], [31], [33],
or only some specific blocks can be reconstructed in this
way [20].

As disk I/O is usually more scarce than network band-
width in a distributed storage system, locally repairable
codes have been proposed to minimize the disk I/O during
reconstruction [30], [12], [26], [16], by allowing a block
to be reconstructed from a small number of other blocks.
The number of other blocks needed to reconstruct a block
is termed as the locality of this block. If all data blocks
have locality no more than l, such codes have information
locality l. A code has all-symbol locality l if all blocks
have locality no more than l. Gopalan et al. [10] established
the bound of the minimum distance as a function of k, r, d
and Papailiopoulos and Dimakis extended this bound by
considering the size of blocks [17]. So far, there have been
several designs of locally repairable codes that achieve the
optimal distance with specific values of k, r, d [26], [17].
However, a general construction is still an open problem.
In this paper, we propose Galloper codes that achieve the
same locality as Pyramid codes [12], an existing family of
local repairable codes that achieve information locality and
have been deployed in Windows Azure Storage [11], and
significantly improve data parallelism when running data
analytical jobs on coded data.

The separation of data blocks and parity blocks makes it
hard to expand data parallelism as we cannot run general
functions on parity data unless the function is linear [13],
[15]. Therefore, a technique called striping has been used
in the code design such that original data can be spread
into all blocks to extend data parallelism [34], [19], [4],
[9], [8]. However, such designs work with MDS codes only
and still suffer from high overhead during reconstruction.
Li et al. have proposed Carousel codes to achieve high
data parallelism and optimal network transfer during recon-
struction simultaneously [14]. However, the Carousel code
still requires high disk I/O during reconstruction as Reed-
Solomon codes. The Galloper codes proposed in this paper
focuses on low disk I/O during reconstruction and high data
parallelism at the same time.

Meanwhile, it has been reported that the hardware of ma-
chines in a data center can have various configurations [24],
and server heterogeneity can lead to system unavailability
and errors [25]. Therefore, it is critical for data analytical
jobs to consider the performance of heterogeneity of servers,
by considering scheduling of jobs [35], [1], or through task
configurations [6]. However, such designs typically do not
consider how data are stored in distributed storage systems,
and thus cannot work with distributed storage systems that
deploy erasure coding. In this paper, Galloper codes can
directly work with servers with heterogeneous performance,
and thus can directly work with distributed analytical jobs
or systems without change of code. We demonstrate that
Galloper codes can be easily integrated into Hadoop and

improve the performance of MapReduce jobs running on
heterogeneous servers.

III. PRELIMINARIES

A. Reed-Solomon Code

We assume that all data are stored in blocks of the same
size, which is a common practice in distributed storage
systems [29]. A (k, r) Reed-Solomon code encodes k data
blocks into r parity blocks, and all the k + r blocks
will be distributed into k + r different servers. In other
words, assuming that the k original blocks contain M bytes,
they can be represented as k vectors2 of length M , i.e.,
F1, . . . , Fk, and then the r parity blocks, Fk+1, . . . , Fk+r,
can be computed by a generating matrix G of size (k+r)×k,
i.e., [

FT
1 · · · FT

k+r

]T
= G ·

[
FT
1 · · · FT

k

]T
.

In this case, the upper k rows of G constitute an identity
matrix, and therefore the original data are embedded into the
first k blocks of the results. If all original data are still em-
bedded into the results after multiplying with the generating
matrix, such erasure codes is known as systematic. Although
there also exist non-systematic Reed-Solomon codes where
all k + r blocks are parity blocks, we focus on systematic
codes in this paper as original data are essential to data
parallelism.

To decode data from any k blocks, any k rows of the
generating matrix G should be linearly independent. Assume
that gi is the i-th row of G. With any k blocks Fi1 , . . . , Fik ,
where {i1, . . . , ik} is a k-subset of {1, . . . , k + r}, the k
original blocks can be decoded as[
FT
1 · · · FT

k

]T
=
([

gTi1 · · · gTik
]T)−1 · [FT

i1 · · · FT
ik

]T
.

In other words, any k blocks among the total k + r blocks
can be decoded into the original data. However, when any
block becomes unavailable, we still need to obtain k other
blocks to reconstruct it, i.e.,

Fj = gj ·
([

gTi1 · · · gTik
]T)−1 · [FT

i1 · · · FT
ik

]T
.

B. Pyramid Code

From Reed-Solomon codes we can construct Pyramid
codes [12], a particular family of locally repairable codes.
A (k, l, g) Pyramid code, where l|k, contains k data blocks
and l + g parity blocks, including l local parity blocks
and g global parity blocks. The g global parity blocks
are computed from the k data blocks with a (k, g) Reed-
Solomon codes. Therefore, when l = 0, a Pyramid code
becomes a Reed-Solomon code. For example, in Fig. 1a,
the (4, 2) Reed-Solomon code is a special case of the
(k = 4, l = 0, g = 2) Pyramid code.

2Each element in the vector is a symbol on a finite field. In this paper, we
do not rely on any direct knowledge of finite filed and readers can simply
consider its arithmetic as usual arithmetic unless mentioned otherwise.



As l|k, we also compute each local parity block from
every k/l data blocks, with a (k/l, 1) Reed-Solomon code.
Fig. 1b shows an example of such a construction with
k = 4, l = 2, g = 1. Therefore, all data blocks and local
parity blocks can be reconstructed from k/l other blocks.
For example, from B and A + B we can reconstruct A
directly. Only the global parity block needs to contact four
other blocks.

It can be proved that a (k, l, g) Pyramid code can tolerate
any g+1 failures, if l ≥ 0. It is also possible to tolerate more
than g+1 failures but not all combinations of such failures.
For example, in Fig. 1b, if A, B, and A+ 2B + 3C + 4D
are all unavailable, the rest blocks can not be decoded.
Comparing with Reed-Solomon codes that can tolerate any
failures of the same number, the introduction of local parity
blocks in a Pyramid code brings slightly more storage
overhead but also makes it possible to save the number of
blocks required to reconstruct a block on a failed server. In
this paper, we propose Galloper codes that can reconstruct
the same block by visiting the same blocks as Pyramid
codes, while the original data can be placed into all blocks
instead of just data blocks.

C. Symbol Remapping

In this paper, we use the technique called symbol remap-
ping, which has been used in the constructions of some
erasure codes [21], [20], [14]. Symbol remapping changes
the basis of the generating matrix of a erasure code and then
make a new code that is linearly equivalent as the original
one and maintains its original properties.

We use Carousel codes [14] as an example to explain
how symbol remapping works, which “moves” original data
from data blocks to all blocks. Since each block will need
to contain both original data and parity data, it is necessary
to expand the original generating matrix G at first, such that

Gg =

 g1,1Ik+r . . . g1,kIk+r

...
. . .

...
gk+r,1Ik+r . . . gk+r,kIk+r

 ,

where gi,j corresponds to an element in G. Then we can
rewrite the encoding process by splitting each block into
k + r stripes, i.e.,[

FT
1,1 · · · FT

1,k+r · · · FT
k+r,1 · · · FT

k+r,k+r

]T
=

Gg ·
[
FT
1,1 · · · FT

1,k+r · · · FT
k,1 · · · FT

k,k+r

]T
,

where Fi,1, . . . , Fi,k+r are the k + r stripes equally split
from the block Fi. A Carousel code then chooses k stripes
from each block which can be written as[

FT
1,i1,1 · · · FT

1,i1,k
· · · FT

k+r,ik+r,1
· · · FT

k+r,ik+r,k

]T
=

Gg0 ·
[
FT
1,1 · · · FT

1,k+r · · · FT
k,1 · · · FT

k,k+r

]T
,

where {ij,l|l = 1, . . . , k} is a k-subset of {1, . . . , k + r}.
By carefully choosing the k-subsets for all j, Gg0 can be a
non-singular matrix and then we can rewrite all stripes as
a linear combination of the k(k + r) chosen stripes. Since
Gg0 can be used as a new basis of the generating matrix,
after a linear combination by using Gg0 as the basis, the
original Reed-Solomon code can be converted to a Carousel
code that maintains the original properties of Reed-Solomon
codes:[

FT
1,1 · · · FT

1,k+r · · · FT
k+r,1 · · · FT

k+r,k+r

]T
= GgG

−1
g0 ·[

FT
1,i1,1 · · · FT

1,i1,k
· · · FT

k+r,ik+r,1
· · · FT

k+r,ik+r,k

]T
,

and GgG
−1
g0 becomes the generating matrix of Carousel

codes. It can be proved that there will be k stripes that are
the same as the original data and in this way the original
data are evenly placed into all blocks [14].

D. Possible Methods and Challenges

As mentioned above, Carousel codes incur the same
volumes of disk I/O during reconstruction as Reed-Solomon
codes, since it is linearly equivalent to the original Reed-
Solomon codes. Second, Carousel codes cannot work well
with heterogeneous servers, as original data are evenly
placed in each block. Therefore, the objectives of Galloper
codes in this paper is to provide data parallelism corre-
sponding to the performance of each server, while still
incurring low disk I/O during reconstruction as Pyramid
codes. However, the method used in Carousel codes cannot
be directly applied to achieve such objectives. The reason
is that to maintain the reconstruction properties, the new
code needs to be linearly equivalent to a Pyramid code.
However, we cannot expand an existing Pyramid code and
find stripes from all blocks that can be decoded into all
original data, because different from Reed-Solomon codes,
we cannot decode the original data from any k blocks.
Therefore, a new method is needed to maintain the existing
properties of Pyramid codes and be applicable to servers
with heterogeneous performance.

Another possible method, which has been used in RAID,
is to cyclically rotate the placement of stripes among blocks.
For example, in RAID-5 [18] which deploys a (4, 1) Reed-
Solomon code, there are five blocks where each block
contain five stripes. If we place the five blocks in a row,
the five stripes in the five blocks will also be placed in five
rows. For the stripe in the same row, they are computed
from the (4, 1) Reed-Solomon code, containing four data
stripe and one parity stripe. The parity stripes in the five
rows are cyclically rotated such that one block contains
only one parity stripe. Therefore, each block contains four
data stripes and still maintain the failure tolerance of the
(4, 1) Reed-Solomon codes. This method can work for
some simple cases like Reed-Solomon codes and may be
extended for heterogeneous servers. However, if it is applied



with Pyramid codes, it will break the original properties of
Pyramid codes. For example, when we need to reconstruct
one block, we will have to visit different blocks as each
stripe in a block cannot be reconstructed from any other
stripes but from some specific stripes, and at different rows
such stripes can be placed in different blocks. This is
particularly undesirable for archival data where servers with
no access are typically put into sleep. While Pyramid codes
originally only need to wake up a small number of servers,
simply rotating stripes may need to wake up more servers
or even all servers in the worst case. It also increases the
complexity of decoding for the same reason. In this paper,
the method that we propose for Galloper codes will conquer
this problem and maintain the original properties of Pyramid
codes in terms of locality and failure tolerance.

IV. GALLOPER CODES: A SPECIAL CASE

We now present the construction of Galloper codes, with
the objective of extending data parallelism from only the
data blocks to all blocks, while maintaining the existing
failure tolerance and locality of Pyramid codes. Therefore,
Galloper codes are still associated with three parameters:
k, l, g. Moreover, a (k, l, g) Galloper code have the same
failure tolerance and locality as a (k, l, g) Pyramid code.

A. System Model and Example

Given a (k, l, g) Galloper code, there will be k + l + g
blocks in total, including k data blocks, l local parity blocks,
and g global parity blocks. Among the total k + g + l
blocks, Galloper codes allow to associate each block with a
weight that corresponds to the performance of its server. For
example, we can use the throughput of sequential disk read
as the performance measurement of the server, or the CPU
processing throughput if CPU is the bottleneck for some data
analytical jobs. We use pi, i = 1, . . . , k + l + g, to denote
the performance measurement of the server. We then use wi

as the weight of each block. Since the original data in the
input are in k blocks, and our objective is to assign such k
blocks of original data into k + l + g blocks corresponding
to the performance of their servers, the weight will be used
to indicate the ratio of original data in the corresponding
block. Therefore, the ideal value of wi should be kpi∑k+l+g

i=1 pi
.

However, there will be some constraints on the weights.
For example, we cannot accommodate more than one block
of original block in one block, i.e., wi ≤ 1, even if the
performance of some server is much higher than the others.
We will elaborate on how to calculate the weight of each
block without violating such constraints in Sec. IV-C, while
still maintaining that servers with higher performance should
store blocks with more original data.

The code construction of Galloper codes starts from a
special case in this section where l = 0 and then be extended
to the general case in Sec. V. In this case, the corresponding
Pyramid code has no local parity blocks, and is equivalent to

a Reed-Solomon code. We use symbol remapping to spread
original data from data blocks to (global) parity blocks and
assign different amount of original data in different blocks
based on the performance of the server.

We now demonstrate a toy example of the code construc-
tion in Fig. 3, where k = 4, g = 1, l = 0. In this example,
we have five blocks, in which the first four have a weight of
6
7 and the last one has a weight of 4

7 . Therefore, eventually 6
7

of the first four blocks contain the original data, so does the
4
7 of the last block. In the construction of Galloper codes,
each block will be divided into multiple stripes. In this
example, each block contains seven stripes. The first four
blocks contain six stripes of original data and the last block
contains four stripes of original data. Compared with a (4, 1)
Reed-Solomon code, this Galloper code achieves the same
failure tolerance, i.e., all original data can be decoded from
any four blocks. We will explain how each parity stripes are
calculated in Sec. IV-B.
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Figure 3. An illustration of Galloper codes with k = 4, l = 0, g = 1,
where white stripes contain original data and gray stripes contains parity
data.

B. Code Construction

Now we describe how to construct Galloper codes with
heterogeneous block weights and l = 0. As there are no local
parity blocks, all parity blocks mentioned in this section
will directly imply global parity blocks. Given k and g,
we construct the corresponding Galloper code from a (k, g)
Reed-Solomon code. As shown in Fig. 4, the (k, g) Reed-
Solomon code will compute g parity blocks from k data
blocks, where k = 4, g = 1. In this case, the (4, 1) Reed-
Solomon code is equivalent to an XOR code, i.e., the parity
block is computed as an (XOR) sum of four data blocks.

As mentioned above, we first divide each block into N
stripes. Since eventually in a block with weight wi, wiN
stripes will contain original data, one way to choose N is
the lowest common multiple of fractions of all weights. In
Fig. 4, we thus choose N = 7. After striping, we can see
that all stripes that contain parity data are still encoded by
the (k, r) Reed-Solomon code from the stripes containing



original data in the same row. In other words, any stripe can
be “reconstructed” by four other stripes in the same row.
For example, we have s25 = s4+ s11+ s18+ (s4+ s11+
s18 + s25) at the fourth row in Fig. 43.
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Figure 4. The change of the basis in the construction of Galloper codes
with k = 4, l = 0, g = 1, where the highlighted stripes (in the blue color)
denote the chosen kN stripes of the new basis, N = 7.

For convenience, we term the stripes that contain original
data as data stripes, and those that contain parity data
as parity stripes. In the original Reed-Solomon code, all
original data are placed in the k data blocks, and all parity
stripes are linear combinations of data stripes. Therefore, the
set of s1 − s28 in Fig. 4 is a basis. The idea to convert
the Reed-Solomon code into a Galloper code is to find
another set of kN stripes as a new basis. After changing
the basis, we will get a linearly equivalent code with the
original data placed in the corresponding stripes of the new
basis. Therefore, wiN stripes should be selected from the
i-th block into the new basis.

We now show how to choose the wiN stripes in each
block, i = 1, . . . , k + g. As shown in Fig. 4, we choose
the first stripe in the first block and go down sequentially
to choose all the w1N stripes. Starting from the row below
the last stripe in the first block, we then sequentially choose
w2N stripes from the second block, and so on. If the stripe in
the last row is chosen, we will start from the first row again
when choosing the next stripe. Eventually we will choose∑g+k

i=1 wiN = kN stripes, enough to form a basis.
In order to prove that the kN chosen stripes can be a basis,

we need to show that they are linearly independent, i.e., all
original data can be solved from such kN stripes. Because
we always choose stripes sequentially from top to bottom,
by choosing the total kN stripes, we have gone through from
the first row to the last row for k times. In other words, in
each row there are k stripes chosen. Therefore, each data

3Notice that the arithmetic operation is performed on a finite field, and
in practice we use a finite field of size 2q , q ≥ 1. We have A+A = 0 on
such a finite field.

stripe that is not chosen can be decoded from the k chosen
stripes in each row.

As we have proved that the chosen kN stripes can be
a basis, we can perform symbol remapping by changing
the basis such that the chosen stripes become data stripes.
Finally, to maximize the chance of sequential data access,
we can rotate the N stripes in each block upwards such that
the chosen stripes stay at the top of the block. If we use
S1 − S28 as the new labels to replace the original labels
of the chosen stripes in the same sequence, we can see that
the Galloper code in Fig. 3 is the code in Fig. 4 after the
change of basis and the rotation of stripes.

C. Weight Assignment

Now we discuss how the weight of a block should be
determined. As mentioned above, wi should correspond
to the performance of the server that stores the block.
However, as the weight wi of a block should be within
[0, 1]. Therefore, if the performance of a server is too much
higher than the rest of the servers, we should “limit” the
performance of that server by di, 0 ≤ di ≤ pi. In other
words, we assume that the actual performance of each server
is pi− di, and then the value of wi should be k(pi−di)∑k+g

i=1 (pi−di)
.

In order to maximize the overall performance, we first
calculate the completion time of running identical parallel
tasks on each block. As wi is the ratio of original data
in a block, then the completion time to process this block
will be proportional to wi

pi−di
= k∑k+g

i=1 (pi−di)
. Therefore,

to minimize the completion time, we should maximize∑k+g
i=1 (pi − di), i.e., minimize

∑n
i=1 di.

We now can determine the actual performance of each
server by solving the following linear programming problem.

min.
k+g∑
i=1

di

s.t. k(pi − di) ≤
k+g∑
i=1

(pi − di), i = 1, . . . , k + g,

0 ≤ di ≤ pi, i = 1, . . . , k + g.

Then we can determine the weight of each block by letting
wi =

(pi−di)k∑k+g
i=1 (pi−di)

. In practice, since we choose N as the
lowest common multiple of the fractions of all weights, we
need to make wi a rational number, and thus we can round
up pi − di such that wi =

dpi−diek∑k+g
i=1 (dpi−die)

.

V. GENERAL CONSTRUCTION

A. Adding Local Parity Blocks

We now discuss the general construction of Galloper
codes with l > 0. Notice that with Galloper codes, the origi-
nal data are no longer stored solely in “data blocks”; instead,
they are stored in all blocks. Therefore, the global and parity
blocks from the original Pyramid codes do not hold their



original meaning any more. However, for convenience we
still keep such terms to describe the blocks that correspond
to the data/local parity/global parity blocks in the original
Pyramid codes, as they will still be reconstructed by visiting
the same blocks in Galloper codes as in Pyramid codes.

The major difference made by the l local parity blocks is
that the original data cannot be decoded from any k blocks.
Therefore, we cannot move original data into local parity
blocks by still sequentially choosing stripes in local parity
blocks, as in some rows we cannot use the chosen stripes
to reconstruct other stripes and the chosen stripes do not
become a basis. Therefore, we take two steps to construct a
general (k, l, g) Galloper code. We first construct a (k, 0, g)
Galloper code, and then continue to move the original data
to local parity blocks.

Since the original data will be moved to local parity blocks
in the second step, in the first step the original data that
should have been stored in local parity blocks should be
kept in the data blocks. Therefore, we need to adjust the
weight of data blocks such that enough data can be left in
data blocks for local parity blocks.
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Figure 5. The assignment of weight in the construction of a (4, 2, 1)
Galloper code.

In the first step, we construct a (k, l = 0, g) Galloper code.
Since each local parity block is computed from k/l data
blocks, the weight of such k/l data blocks should be l

k of
the total weights of such k/l data blocks and the local parity
block. Assume we are constructing a (k = 4, l = 2, g = 1)
Galloper code and all blocks have the same weight, i.e.,
wi =

4
7 . In Fig. 5, we have seven servers to host blocks of

the same weight 4
7 . Therefore, in the first step the weight of

all data blocks will be
(
4
7 + 4

7 + 4
7

)
× 2

4 = 6
7 . In order to

differentiate the weight used in different steps, we use wig

to represent the weight of blocks in the first step.
With the weight wig we can construct a (k, 0, g) Galloper

code containing k data blocks and g global parity blocks
only, as shown in Fig. 5. Because in each group of k/l data

blocks which will be used to compute a local parity block,
their weight will be the same, we know that the number of
data stripes in such data blocks will also be the same.

Now we can start the second step, which adds local
parity blocks. Without loss of generality, we only consider
one local parity block which is encoded from data blocks
1, . . . , k/l. Other local parity blocks can be constructed
similarly. We have already known that after the first step,
a data block will contain wigN data stripes. As the k/l data
blocks that we consider here have the same weight, we use
wg to represent their weights.
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Figure 6. An illustration of adding a local parity block in the construction
of a (4, 2, 1) Galloper code.

We first use a (k/l, 1) Reed-Solomon code to compute
the local parity block directly, and then change the basis as
in Sec. IV-B to assign the original data into this block. This
time, the weight of each block will be assigned as wil =

wi

wg× k
l

× k
l = wi

wg
, such that the weight is still proportional

to the performance of the corresponding server and the sum
of weights equals k

l . Before changing the basis, stripes will
be chosen only among the first wgN stripes in each block
since data stripes only appear in the first wgN rows in data
blocks. Therefore, in block i, wi

wg
×wgN = wiN stripes will

be chosen and eventually there will be wiN data stripes after
the second change of basis.

We show an example of the second step in Fig. 6, which
is a continuation of Fig. 5. We can see that since all servers
have the same performance measurement, the original data
which are now in the first blocks should be equally spread
into the three blocks now. Therefore, the weight of the three
blocks in this step is 2

3 . As there are only six original
stripes in the first two blocks, we sequentially choose four
stripes in each of the three blocks and then perform symbol
remapping. Notice that the only parity stripes in the first two
blocks are also subject to the change of the basis.

In this case, the only changes in the basis happen in the
group of the first k/l+1 blocks, all other original stripes in
the other blocks remain the same. Therefore, as long as we
can prove that the original data stripes can be decoded from



the chosen stripes, the chosen stripes (and the data stripes
in other blocks) can be a new basis. From Fig. 6 we can see
that overall there will be

∑k/l+1
i=1 wiN = kN

l chosen. Since
we choose stripes from block to block sequentially, it means
that in each row k

l stripes are chosen. As originally there
are k/l data blocks, all other stripes can be reconstructed by
the chosen stripes in the same row. Therefore, we can get a
new basis in this way.

We change the basis in all groups of k/l data blocks and
will eventually get the Galloper code in which the amount
of original data inside each block is proportional to the
performance measurement of the corresponding server. At
last, we still rotate stripes upwards to make the original
stripes appear at the top of each block.

We have known that by changing the basis the original
linear dependency of vectors can be maintained. As each
parity stripe is a linear combination of data stripes, it can be
regarded as a scalar product of an coefficient vector and a
vector of original stripes. Therefore, the original dependency
in the Pyramid code can be maintained, such that the first
k+ l blocks can be reconstructed with the other k/l blocks
and the last g blocks can be reconstructed from other k
blocks. Therefore, a (k, l, g) Galloper code can tolerate g+1
failures with k+l+g

k times storage overhead, just like the
original Pyramid code.

B. Weight Assignment

Comparing with the special case of l = 0, the gen-
eral construction of Galloper codes introduces additional
constraints on the weights of blocks. First, the weight of
each block in the first step, i.e., wig , should satisfy the
condition that 0 ≤ wig ≤ 1. Moreover, in the second step,
to compute local parity blocks, the weights in each group
of k/l + 1 blocks should also satisfy a similar condition,
such that 0 ≤ wil ≤ 1. Given the original performance
pi of each server, such constraints can be translated to the
following linear programming problem to properly lower the
performance of the overqualified servers:

min.
k+g+l∑
i=1

di

s.t. l

(j+1)(k/l+1)∑
i=j(k/l+1)+1

(pi − di) ≤
n∑

i=1

(pi − di),

j = 0, . . . , l − 1,

(k/l)(pi − di) ≤
(j+1)(k/l+1)∑
i=j(k/l+1)+1

(pi − di),

∀i ∈ [j(k/l + 1) + 1, (j + 1)(k/l + 1)], j = 0, . . . , l − 1,

k(pi − di) ≤
k+g+l∑
i=1

(pi − di), i = 1, . . . , k + g + l,

0 ≤ di ≤ pi, i = 1, . . . , k + g + l.

Similar to Sec. IV, we can round up pi − di to make wi a
rational number.

VI. IMPLEMENTATION

We have implemented Galloper codes in C++, with all
coding operations performed as vector/matrix multiplica-
tions on a finite field. The size of the finite field we choose
is 28, which corresponds to one byte. The size of the finite
filed are sufficient for most values of k, l, g in practice, as
long as k + l + g < 28. For larger values of k, l, g, we
can also increase of the size of the finite field. In this way,
data containing M bytes can be regarded as a vector of
size M symbols on the finite field. To encode a file of
size kM bytes, we divide this file equally into k blocks
and further divide each block equally into N stripes. All
the kN stripes have the same size, and we use row vector
si, i = 1, . . . , kN to denote them. Therefore, the original
data can be represented as a matrix of size kN × M

N , i.e.,[
FT
1,1 · · · FT

1,N · · · FT
k,1 · · · FT

k,N

]T
.

As mentioned in Sec. III-A, the encoding of linear erasure
codes, including Reed-Solomon codes, Pyramid codes, as
well as Galloper codes, can be implemented as a product of
a generating matrix G and the matrix of the original data,

i.e., G ·
[
FT
1,1 · · · FT

1,N · · · FT
k,1 · · · FT

k,N

]T
. To get the

generating matrix of a Galloper code, we start from a (k, g)
Reed-Solomon code with a (k + g) × k generating matrix,
and then expand this generating matrix into a (k+g)N×kN
matrix Gg , by replace each element with the product of this
element and a N × N identity matrix, in the same way as
Carousel codes in Sec. III-C. We then perform the change
of the basis by selecting a submatrix of Gg as Gg0. We
know that each row in Gg corresponds to one stripe after
encoding. Thus, we choose the rows in Gg that correspond
to the stripes chosen in Sec. IV and calculate GgG

−1
g0 as the

generating matrix of the (k, 0, g) Galloper code.
If l > 0, we then add lN rows into GgG

−1
g0 that

correspond to the l local parity blocks. To calculate the lN
rows, we first get a generating matrix of a (k/l, 1) Reed-
Solomon code, and expand it by N times into Gg1. We
rewrite GgG

−1
g0 as [ĜT

1 · · · ĜT
l ĜT

l+1 · · · ĜT
l+g]

T where Ĝj

corresponds to each of the k/l “data” blocks, j = 1, . . . , l
and Ĝl+1, . . . , Ĝl+g correspond to the last g “global parity”
blocks. We then use Gg1Ĝj to replace Ĝj , j = 1, . . . , l, and
get a new matrix Ĝ. Finally, we perform symbol remapping
in every k/l + 1 blocks as described in Sec. V, still by
choosing a submatrix and then multiply Ĝ with the inverse
of such submatrices. Then we can get the generating matrix
of the (k, l, g) Galloper code.

In our implementation, we use Intel’s storage acceleration
library (ISA-L) to implement the finite field operations.
We have also implemented a prototype on Apache Hadoop
2.7.2 that deploys Galloper codes. In addition, we imple-
ment Reed-Solomon codes and Pyramid codes for compar-



ison purposes. In particular, we have implemented a new
FileInputFormat class in Hadoop so that Hadoop can know
the boundary between the original data and parity data in
each block by the parameters of Galloper codes, and only
read original data from each block when running Hadoop
jobs.

VII. EVALUATION

In this section, we evaluate the performance of Galloper
codes by comparing with Reed-Solomon codes and Pyramid
codes. We start from the performance of coding operations,
including encoding, decoding, and reconstruction. We then
measure the performance of running data analytical jobs on
the coded data. In general, the evaluation results show that
Galloper codes achieve similar performance during most
coding operations as existing Pyramid codes, but signifi-
cantly improve the performance of running data analytical
jobs on the coded data, on both homogeneous and hetero-
geneous servers.

A. Performance of Encoding, Decoding, and Reconstruction

To evaluate the performance of encoding, decoding, and
reconstruction, we run the corresponding operations on
Amazon EC2 instances of type c4.4xlarge, with 16 CPU
cores and 30 GB memory. In the evaluation, we compare
three kinds of erasure codes, including Reed-Solomon codes,
Pyramid code, and Galloper codes. With each code, we
encode a file into k blocks and guarantee that any 2 failures
can be tolerated. In other words, r = 2 for Reed-Solomon
codes and g = 1 for Pyramid codes and Galloper codes. We
change the value of k between 4 and 12 and adjust the size of
the file accordingly such that each block always contains the
same amount of data after encoding with different values of
k. In addition, we set l = 2 for Pyramid codes and Galloper
codes. We run all operations repetitively for 20 times and
show the means as the results.

In Fig. 7a, we show the performance of encoding with
Reed-Solomon codes, Pyramid codes, and Galloper codes.
The size of each block after encoding is 45 MB with differ-
ent values of k. Therefore, we can see that the completion
time increases with k as the total amount of data to encode
also increases with k. Comparing with Reed-Solomon codes,
Pyramid codes and Galloper codes both require more time
to encode data, because they have one more block in the
output and higher complexity than Reed-Solomon codes.
However, we observe that Galloper codes maintain very
similar encoding time as the original Pyramid code, for all
values of k in Fig. 7a. Therefore, we believe that even though
the construction of Galloper codes is based on existing
Pyramid codes, we still achieve a comparable complexity.

We also compare the time of decoding operations in
Fig. 7b. In this experiment, we decode the original data
from k blocks with Reed-Solomon codes, Pyramid code,
and Galloper codes. With Reed-Solomon codes and Pyramid
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Figure 7. Comparisons of the completion time of encoding/decoding a
file for various values of k with a (k, 2) Reed-Solomon code, a (k, 2, 1)
Pyramid code, and a (k, 2, 1) Galloper code.

codes, we remove one data block and decode the original
data from k − 1 data blocks and one parity block. With
Galloper codes, on the other hand, there is no such a block
where all data are original. For a fair comparison, we still
remove the same block and use the same set of blocks
to decode the original data as Reed-Solomon codes and
Pyramid code. Different from encoding, this time we observe
that the decoding time of Galloper codes is higher than
Reed-Solomon codes and Pyramid codes. This results can
be expected because with Galloper codes, there are more
parity data in k blocks, while with Reed-Solomon codes
and Pyramid codes only one block contains original data.
We can expect a lower completion time if we can visit all
the rest blocks to compute the original data.

To evaluate the performance of reconstruction, we still
remove one block and measure the completion time and
the amount of data read from other existing blocks during
reconstruction. We encode data with a (4, 2) Reed-Solomon
code, a (4, 2, 1) Pyramid code and a (4, 2, 1) Galloper code
and each block after encoding is still 45 MB. In this ex-
periment, we remove each of the six blocks (Reed-Solomon
code) or seven blocks (Pyramid code and Galloper code)
and reconstruct this block. Still, the first k = 4 blocks with
the Reed-Solomon code are data blocks. Similarly, with the
Pyramid code and Galloper code, the first k+ l = 4+2 = 6
blocks are data blocks or local parity blocks. Therefore,
we can expect lower overhead to reconstruct the first six
blocks than Reed-Solomon codes, which has been reflected
in Fig. 8. In Fig. 8a, we can see that to reconstruct the
first six blocks, the Pyramid code and the Galloper code
require less time than the Reed-Solomon code. The reason
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Figure 8. Comparisons of the completion time of reconstructing a block
and the corresponding disk I/O for various values of k with a (k, 2) Reed-
Solomon code, a (k, 2, 1) Pyramid code, and a (k, 2, 1) Galloper code.

is shown in Fig. 8b that the Pyramid code and the Galloper
code incur less disk I/O, in terms of the amount of other
blocks read to reconstruct a block, on data blocks and local
parity blocks than the Reed-Solomon code. Once again,
we can see that the Galloper code incurs similar or even
lower overhead during reconstruction than existing Pyramid
codes. Since the original Pyramid codes achieve information
locality only, Galloper codes can only achieve low disk
I/O in the corresponding blocks as well. Therefore, we
suggest placing the global parity blocks on servers with
lower performance, such that less original data will be placed
in such blocks. We will study how to achieve all-symbol
locality in our future work.

B. Performance of Running Hadoop Jobs

To evaluate the performance of running data analytical
jobs over Galloper codes, we run two representative Hadoop
benchmarks, terasort and wordcount, on 30 Amazon EC2
instances of type r3.large with 2 CPU cores and 15 GB
memory. The original data are encoded with Pyramid codes
or Galloper codes with k = 4, l = 2, g = 1, and each
of the seven coded blocks contains 450 MB. We run each
benchmarks repetitively for 20 times and show the average
results in Fig. 9.

We can see that with Galloper codes, the average comple-
tion time of the map tasks in the two benchmarks can both be
significantly saved, by 31.5% and 40.1%, respectively. This
is because with Galloper codes, 4

7 of blocks are original
data, leading to a saving of completion time by at most
42.9%. Although the completion time of reduce tasks is not
affected so significantly, the overall completion time can still
be saved by 30.4% and 36.4%, respectively.
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Figure 9. Comparison of Hadoop jobs running on data encoded with
Pyramid codes and Galloper codes, where k = 4, l = 2, g = 1.

Finally, we evaluate the performance of running Hadoop
jobs on heterogeneous servers. We still use the same servers,
but limit the CPU usage of some servers to 40% of their
original performance. We then encode data using Galloper
codes with weights calculated according to the performance
of servers. We show the average completion time of map
tasks of running a wordcount job on different servers in
Fig. 10. We can see that compared to the previous Galloper
codes constructed for homogeneous servers, this time the
completion time on the two types of servers becomes very
similar, since the amount of original data are distributed
according to the performance of corresponding servers.
Therefore, the overall completion time can also be further
saved by 32.6%.

servers with
 40% performance

servers with
 100% performance

0

50

100

150

tim
e 

(s
ec

.)

Galloper (homogeneous)
Galloper (heterogeneous)

Figure 10. Comparison of Hadoop jobs running on data encoded with
Galloper codes with homogeneous and heterogeneous weights, with k =
4, l = 2, g = 1.

VIII. CONCLUSION

Locally repairable codes achieve desirable properties for
distributed storage systems, including high failure tolerance
and low disk I/O during data reconstruction. However,
the parallelism of running data analytical jobs over data
encoded by locally repairable codes is limited to specific
servers. In this paper, we propose Galloper codes, a new
family of locally repairable codes that maintains the same
properties of failure tolerance and disk I/O as Pyramid codes,
an existing family of locally repairable codes, and even
significantly extend data parallelism from specific servers to
all servers. Moreover, Galloper codes can adapt to servers
with heterogeneous performance to avoid stragglers.
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