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Abstract—Deployed in various distributed storage systems,
erasure coding has demonstrated its advantages of low storage
overhead and high failure tolerance. Typically in an erasure-
coded distributed storage system, systematic maximum dis-
tance separable (MDS) codes are chosen since the optimal
storage overhead can be achieved and meanwhile data can
be read directly without decoding operations. However, data
parallelism of existing MDS codes is limited, because we can
only read data from some specific servers in parallel without
decoding operations. In this paper, we propose Carousel codes,
designed to allow data to be read from an arbitrary number of
servers in parallel without decoding, while preserving the op-
timal storage overhead of MDS codes. Furthermore, Carousel
codes can achieve the optimal network traffic to reconstruct
an unavailable block. We have implemented a prototype of
Carousel codes on Apache Hadoop. Our experimental results
have demonstrated that Carousel codes can make MapReduce
jobs finish with almost 50% less time and reduce data access
latency significantly, with a comparable throughput in the
encoding and decoding operations and no additional sacrifice
of failure tolerance or the network overhead to reconstruct
unavailable data.

Keywords-data parallelism, distributed storage, Reed-
Solomon codes, minimum-storage regenerating codes, MapRe-
duce

I. INTRODUCTION

Distributed storage systems, such as the Hadoop Dis-
tributed File System (HDFS) [1] and Windows Azure Stor-
age (WAS) [2], store tremendous volumes of data on a large
number of commodity servers. As server failures are fre-
quent [3], distributed storage systems must store redundancy
to protect data against these failures. For example, in HDFS,
data are replicated 3 times by default, such that any two
failures can be tolerated.

Erasure coding, such as Reed-Solomon (RS) codes [4],
has been increasingly replacing replications in distributed
storage systems due to its high failure tolerance and low
storage overhead [5], [6]. An (n, k) RS code that encodes
k blocks of data into n blocks, can decode the original data
from any k blocks among such n blocks. With the same
number of failures to tolerate, MDS codes achieve the opti-
mal storage overhead. For example, using an (n = 6, k = 4)
RS code, we can always decode data with no more than 2
unavailable blocks by paying a 1.5x storage overhead, while
a 3x storage overhead must be paid for the 3-way replication
to tolerate the same number of failures. In coding theory, this
property is known as maximum distance separable (MDS)

property.
As decoding operations can increase the latency of data

access, MDS codes deployed in distributed storage systems
are typically systematic, in that k out of total n blocks are
exactly the same as the original data. These k blocks are
hence called data blocks, and the other blocks are known
as parity blocks. Therefore, reading data without decoding
operations is possible as we just need to read the k data
blocks, without requiring any of the parity blocks unless
some data block is not available.

Systematic codes can reduce the latency and improve
the throughput of reading data. However, data parallelism,
which refers to the number of blocks that can be read by
different processes simultaneously, is also limited by existing
systematic erasure codes, since we cannot read original data
directly from parity blocks. For example, when we run a
MapReduce job on data stored in HDFS, with systematic
erasure codes the number of map tasks will be limited by
the number of data blocks as we cannot run any map tasks by
reading only parity data from local servers. Therefore, unlike
replication where we can easily extend data parallelism by
increasing the number of copies, data parallelism of existing
systematic erasure codes is forever limited by the number
of data blocks unless additional network transfer is allowed,
no matter how many blocks we have in total.

In this paper, we present Carousel codes, designed to
extend data parallelism from reading k data blocks in parallel
to reading all n blocks. Different from existing erasure
codes, Carousel codes can sequentially embed the original
data into all the blocks, instead of just k particular blocks,
and therefore data can be read in parallel from all the blocks
with a higher overall throughput. However, with all the
blocks containing original data, we will have to perform
decoding operations to read data even though only one block
is unavailable. Hence, the construction of Carousel codes
can allow the number of blocks that contain original data
to be arbitrarily specified between k and n, in order to
achieve a flexible tradeoff between data parallelism and data
availability.

Moreover, Carousel codes can further achieve the optimal
network traffic to reconstruct an unavailable block. With
RS codes, for example, k blocks must be downloaded
from remote servers to reconstruct one unavailable block,
leading to a k-time increase of network traffic. As shown by
Dimakis et al. [7], the optimal volume of network transfer to



reconstruct a block with MDS codes from d existing blocks
is only d

d−k+1 times of a block, k ≤ d < n. In this paper,
we show that besides the MDS property and the configurable
data parallelism, Carousel codes can achieve such optimal
network transfer during reconstruction as well.

We have implemented Carousel codes in C++, and de-
veloped its prototype in Apache Hadoop. Our experimental
results have shown that, compared to the original HDFS
with RS codes, the completion time of MapReduce jobs
running on our Hadoop cluster can be saved by up to 46.6%.
Besides, the data access time to obtain data from HDFS can
be significantly reduced as well.

II. MOTIVATING EXAMPLES

We first provide an example to motivate the introduction
of Carousel codes. In this example, as shown in Fig. 1a,
we assume that in a distributed storage system, a (5, 3) sys-
tematic RS code is deployed. Further, as a toy example, we
assume that a file contains 3 blocks, which can be encoded
into 5 blocks, and that the original data are embedded in
the first 3 data blocks. To maximize failure tolerance, the
5 blocks are stored on different servers. Take running a
MapReduce job on this file as an example, the number of
map tasks depends on the number of data blocks [8]. In
Hadoop, each map task will be preferably located on the
local server that hosts the corresponding data block. In this
example, there will be 3 map tasks running on 3 servers,
each storing one of the 3 data blocks. The number of map
tasks can not be extended to servers that store parity blocks,
since no original data can be read solely from parity blocks
without decoding.

map() map() map()

map() map() map() map() map()
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data blocks parity blocks
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(a) Systematic RS code

(b) Carousel code

Figure 1. A comparison of data parallelism: systematic RS codes
vs. Carousel codes.

Carousel codes, on the other hand, can maintain the same
property as RS codes that any 3 blocks among 5 blocks
are sufficient to decode the original data. Different from
traditional systematic RS codes, we embed the original data
into all the 5 blocks such that we can run 5 map tasks on

servers with local data. As shown in Fig. 1b, 3
5 of each block

store original data and the rest store parity data. Compared
with systematic RS codes, each map task will process 40%
fewer data and we can expect less time spent on running
map tasks and a shorter job completion time overall.

Similarly, when a remote client downloads the entire
file from the distributed storage system, it can download
data from all the servers with original data. When the
read throughput is bottlenecked by the servers that store
data, e.g., on the hard disks or the outgoing links, reading
from more such servers in parallel will increase the overall
throughput of obtaining this file. In fact, it has been shown
that (n = 9, k = 6) RS codes can perform better on the
overall read throughput than 3-way replication, by reading
k blocks in parallel [9], [10]. With Carousel codes, we can
achieve further improvements by extending the parallelism
from k to n.

III. RELATED WORK

Erasure coding in distributed storage systems. Achiev-
ing the MDS property, RS codes offer the optimal storage
overhead to tolerate the same number of failures. Hence,
RS codes have been widely deployed in various distributed
storage systems [5], [10]–[15]. However, it has been shown
that RS codes can incur a huge amount of extra traffic
to reconstruct unavailable blocks [16], as an (n, k) RS
code needs k blocks to reconstruct only one unavailable
block. Hence, many commercial storage systems or research
projects deploy other novel erasure codes that are designed
specifically for distributed storage systems. For example,
locally repairable codes or its variants have been deployed
in [3], [6], [17], [18], such that only a small number of
blocks needs to be downloaded during reconstruction.

The optimal traffic of reconstruction among all MDS
codes, however, is achieved by minimum-storage regenerat-
ing (MSR) codes [7]. Rashmi et al. [19] proposed a general
construction of (n, k, d) MSR codes where d ≥ 2k − 2,
which reconstruct one missing block from d existing ones.
With some specific values of (n, k, d), some constructions
of MSR codes (e.g., [20]–[22]) have been proposed on a
small Galois field. In this paper, we focus on improving
data parallelism of MDS codes, and hence propose Carousel
codes that achieve the optimal amount of network traffic as
MSR codes and further extend data parallelism.

Performance of data access with erasure coding. As
erasure coding has been widely deployed in distributed
storage systems, it becomes more important to optimize the
performance of data access related to erasure coding, and
many efforts have been made on degraded read. Degraded
read is performed when a data block is requested but
unavailable, by decoding existing k blocks including parity
blocks. For MapReduce jobs running over data in an erasure-
coded distributed storage system, Li et al. [23] proposed
a scheduling algorithm for MapReduce that mitigates the



latency when data must be obtained with degraded reads.
On the other hand, Xia et al. [18] and Li et al. [24] both
considered the skewness of data demand and store data into
multiple tiers with different erasure codes, in order to reduce
the cost of degraded reads by reducing its complexity on data
with high demand. Hu et al. [25] considered the problem
of load balancing in an erasure-coded distributed storage
system, such that the tail access latency of degraded read
can be reduced by placing anti-correlated blocks in terms of
demand on the same server.

However, degraded read requests typically occupy a small
portion among all read requests, and with systematic erasure
codes, most read operations will visit data blocks only. In
contrast, Carousel codes can improve the performance of
data access, such as running MapReduce jobs or retrieving
data from the storage system, by extending the degree of data
parallelism. Although there have been previous works [26]–
[30] that can also distribute original data into all blocks, they
are not designed particularly considering the performance
of parallell data processing. For example, some of existing
works rely on data striping [27], [29], that divides data
into very small pieces. Data striping makes original data
in each block out of order, and thus can compromise the
performance of MapReduce jobs running on it. On the other
hand, none of these works can consume a high volume of
network traffic during recontruction. In summary, Carousel
codes are, to out best knowledge, the first erasure codes that
can achieve both high data parallelism running MapReduce
jobs and the optimal network traffic during reconstruction at
the same time. Besides, we also offer the flexiblity to control
the degree of data paralllism in Carousel codes.

IV. PRELIMINARIES

In a distributed storage system, it is a common practice
that data are stored into blocks of the same size [1], [2].
In order to tolerate potential failures that make blocks
unavailable, (n, k) RS codes can encode k blocks into n
blocks such that any k among n blocks are sufficient to
decode the original data. In order to reduce the latency of
data access, typically RS codes deployed in a distributed
storage system are systematic. In other words, the n blocks
contain k data blocks and n− k parity blocks.

The encoding operations of RS codes are performed on
the unit of symbols, and each block contains a certain num-
ber of such symbols. Typically, a symbol is simply a byte
and the arithmetic operation is performed on the Galois field
of size GF (28). Though the symbol and its corresponding
Galois field may have different sizes in practice, in this paper
we assume that a symbol is a byte.

The encoding and decoding operations of RS codes can
be interpreted and implemented as matrix multiplications on
the Galois field. Given k original blocks of w bytes, we can
represent them as f1, . . . , fk, where fi is a row vector of
w symbols, i = 1, . . . , k. An (n, k) RS code encodes the k

blocks by multiplying them with an n×k generating matrix
G, i.e., G ·

[
fT1 · · · fTk

]T
, where fTi denotes the transpose

of fi, and each row in the result denotes one block after
encoding. If the RS code is systematic, G must contain a
k × k identity matrix. Dividing G into n submatrices of
size 1× k such that G =

[
gT1 · · · gTn

]T
, the n blocks after

encoding can be represented as giF , i = 1, . . . , n, where
F =

[
fT1 · · · fTk

]T
. Without loss of generality, we assume

that the top k rows always constitute an identity matrix for
systematic RS codes. In this way, g1F, . . . , gkF are data
blocks and the rest are parity blocks. If there are more than
k blocks to store, they will be stored in multiple stripes
where each stripe encodes k original blocks.

To achieve the MDS property, the generating matrix of an
(n, k) RS code must guarantee that any k rows can constitute
a non-singular submatrix. As such, we can decode the
original data from any k blocks by calculating the inverse of
this submatrix. For example, given k blocks gi1F, . . . , gikF ,
where {ij |j = 1, . . . , k} is a k-subset of {1, . . . , n}, the
original k blocks in F can be calculated by

F =
([
gTi1 · · · gTik

]T)−1 ·
[
(gi1F )

T · · · (gikF )T
]T
. (1)

From any k blocks, we can always obtain the inverse of the
matrix in the equation above as any k rows in G constitute
a non-singular matrix.

To reconstruct a block, at least k blocks are required.
Without loss of generality, we reconstruct g1F as an exam-
ple, from k blocks gi1F, . . . , gikF where {ij |j = 1, . . . , k}
is a k-subset of {2, . . . , n}. As we can decode F from these
k blocks by (1), we can simply obtain g1F by calculating

g1

([
gTi1 · · · gTik

]T)−1 ·
[
(gi1F )

T · · · (gikF )T
]T
. (2)

During such reconstruction, k blocks are downloaded to
reconstruct only one block, leading to a high consumption
of network bandwidth. In fact, it has been proved that if
there are d blocks available, the optimal network transfer
needed to reconstruct a block with an (n, k) MDS code
equals the size of d

d−k+1 blocks, k ≤ d < n, achieved by
MSR codes [7]. Different from RS codes, all blocks encoded
by (n, k, d) MSR codes are further divided into α segments
where α = d − k + 1. Thus, one segment will be obtained
from each of the d existing blocks during reconstruction. In
fact, an (n, k) RS code can be considered as a special case
of MSR codes with d = k.

For simplicity, we assume that each block contains w
bytes, and w is divisible by α. Hence, a block fi can be
written as an α × w

α matrix, i = 1, . . . , k, where each row
contains one segment. The generating matrix G will then
be of size nα × kα. Similarly, we can divide G into n
submatrices of size α×kα and then all blocks after encoding
can still be written as gTi F , i = 1, . . . , n. Moreover, as MSR
codes are MDS, given {ij |j = 1, . . . , k} that is a k-subset



of {1, . . . , n},
[
gTi1 · · · gTik

]T
must be non-singular, and we

can still apply (1) to decode the original data. Systematic
MSR codes must further have an identity submatrix of size
kα × kα in G. To be consistent with RS codes, we still
assume that the first k blocks are data blocks and the rest
are parity blocks.

To reconstruct a block giF from d existing blocks, each
existing block will be encoded into just one segment on
its local server at first. For example, an existing block gjF ,
j 6= i, will be multiplied by a row vector vi,j of size α on its
left, i.e., vi,jgjF . A server that downloads d such segments
from d existing servers can encode them into giF . For clarity
and simplicity, we omit the details of such reconstruction in
this paper, which can be found in [19], [31] for interested
readers.

V. EXTENDING DATA PARALLELISM

A. An illustrative example

We demonstrate the construction of Carousel codes from
a toy example. In Fig. 2 we present an example of Carousel
codes with n = 3 and k = 2. As k = 2, we assume that the
original data contains 2 blocks. In this example, each block
will be divided into 3 units of data, which are labeled as 1−3
and 4−6 in Fig. 2, respectively. The Carousel code computes
3 blocks from these 2 blocks. Still, each block contains 3
units of data, 2 of which correspond to those in the original
data. The third unit in each block, on the other hand, contains
parity data. Hence, all original data are evenly distributed
into all the blocks. Compared with (n = 3, k = 2) RS codes
which contain 2 data blocks, this Carousel code achieves the
same storage overhead while making it possible to extend
data parallelism into all 3 blocks, by reading the top 2

3 of
each block. Moreover, it is easy to observe that any 2 blocks
can decode the original data while the size of each block
equals a half of the original data. Hence, the same as RS
codes, this Carousel code is MDS as well.

1

4+5

2

3

1+6

4

5

2+3

6

block 1 block 2 block 3

Figure 2. An example of Carousel codes with n = 3 and k = 2.

B. General construction

We now present the general construction of Carousel
codes. Given n and k, the corresponding Carousel codes
can be constructed from existing systematic RS codes.

Step 1: Expansion. Given an (n, k) systematic RS code,
we expand each block into N units where K

N is the irre-
ducible fraction of k

n . Without loss of generality, we assume
that the first k blocks are data blocks, and label the units in
block i as 1+ (i− 1)N, 2+ (i− 1)N, . . . , iN , i = 1, . . . , k.
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(a) step 1: expansion (b) step 2: reconstruction

(c) step 3: transformation (d) step 4: reordering

Figure 3. An illustration of the construction of Carousel codes with n = 3
and k = 2.

These units are known as data units as they come from data
blocks. The units in the other n− k parity blocks, referred
to as parity units, can be represented as linear combinations
of the units of the k data blocks in the same row. As an
example, Fig. 3(a) shows a (n = 3, k = 2) systematic RS
code where the only parity block is a linear combination of
both data blocks1. Here 2

3 is already an irreducible fraction,
and thus we expand each block into 3 units.

Step 2: Reconstruction. In this step, we first choose K
units from each block in a round-robin manner. Specifically,
we choose K units starting from the first one in block 1
down towards the K-th one where all the remaining N −K
units remain unchosen, from the second one in block 2 down
towards the (K+1)-th one, and so on. If there are no K units
below a starting unit, we will go back to the first one and
keep choosing the units downwards until K units have been
chosen. For example, in block N , we start choosing from
the last unit and then choose the top k− 1 units. In Fig. 3b,
we highlight the chosen unit in each block. If N 6= n, we
choose the first K units again from block N +1, and so on.
In other words, for any positive integer j, the units chosen
in block i + jN are the same as those chosen in block i,
i = 1, . . . , N .

In general, in block i, the j-th unit is chosen if and only
if (j − i) mod N ∈ [0,K − 1].

Hence, it can be proved that in each row of all the blocks,
there will be k units chosen. Without loss of generality, we
only consider the last unit. The last unit in a block will
be chosen if and only if the starting unit in the block is the
(N−K+1)-th unit or below. From the rule above we know
that there are K · nN = K · kK = k such blocks, from block
N −K + 1 to block N , block 2N −K + 1 to block 2N ,
and so on. In other words, the unit in the last row will be
chosen in k blocks. Similarly, we can prove that every row
will contain k chosen units.

As all parity units are linear combinations of data units

1For simplicity, we may omit coefficients of linear combinations in this
paper when there is no ambiguity.



in the same row, we can reconstruct any unchosen unit from
the k chosen units in the same row. For example, in Fig. 3b
we can reconstruct the third unit in block 1 from the two
units in block 2 and block 3. In other words, unit 3 can be
written as a linear combination of 6 and 3 + 6. In this way,
we can rewrite all chosen units by reconstructing them from
the k unchosen units.

Step 3: Transformation. In this step, we transform all
chosen units into a data unit. To achieve this, all chosen
blocks from block 1 to block n should be mapped to new
labels between 1 and Kn. For example in Fig. 3c, we map
the first two chosen units 1 and 2 into unit 1′ and 2′.
Similarly, we map the second and the third unit in block 2
into unit 3′ and 4′, and the third and the first units in block
3 as unit 5′ and 6′. In block i where i ≤ N , the sequence
of labels starts from the i-th unit, and goes downwards (and
possibly back to the top) until the unit is not unchosen. Once
again for any positive integer j, the sequence in block i+jN
should be the same as block i.

As all unchosen units can be written as linear combina-
tions of k chosen units in the same row, we can map all
unchosen units by substituting all the components in such
linear combinations with the new labels of chosen units in
the same row. Hence, we map the three unchosen units in the
three blocks in Fig. 3c from 3 = 6+(3+6), 4 = 1+(1+4)
and 2+ 5, into 4′+5′, 1′+6′ and 2′+3′. We will show in
Sec. VI that the new code is equivalent to the original one
after such a transformation by formalizing the construction.
We can notice that the new code now distributes all data
units evenly into all the blocks now.

Step 4: Reordering. In this step, we reorder the units in
all the blocks such that all data units are at the top of their
blocks. In all the blocks, we rotate units upwards until the
unit with the smallest label reaches the top. In particular,
for any integer j ≥ 0, we should move units upwards by
i− 1 units in block i+ jN . After this step, the construction
is finished. We can see from Fig. 3d that the Carousel code
with n = 3 and k = 2 in Fig. 2 is now constructed.

C. Properties

Before Step 4, we can decode/reconstruct any unit from
any k units in the same unit. As Step 4 only changes the se-
quence of units in each block, we can still decode/reconstruct
the original data from any k blocks in Carousel codes.
Moreover, since the size of each block and the amount of
original data in total remain unchanged, we can prove that
Carousel codes are still MDS codes.

To reconstruct any block, we need to reconstruct all
units in this block. Since before Step 4 any unit can be
reconstructed from any k units in the same row, after
the reordering in Step 4 the j-th unit in block i can be
reconstructed from k of any j′-th units in block i′ where
(i+ j) ≡ (i′ + j′) mod n. For example, we can reconstruct

unit 4 + 5 in block 1 from unit 4 in block 2 and unit 5 in
block 3.

VI. ACHIEVING OPTIMAL RECONSTRUCTION TRAFFIC

In this section, we extend the construction of Carousel
codes by adding a new parameter d, which specifies the
number of existing blocks required during reconstruction,
k ≤ d < n. With a given value of d, Carousel codes
incur the same network traffic as MSR codes to reconstruct
an unavailable block. In other words, Carousel codes can
achieve the optimal network traffic during reconstruction. In
fact, we will show that the construction above is a special
case with d = k.

A. Expanding MSR codes

Given values of (n, k, d), Carousel codes can be con-
structed from an (n, k, d) systematic MSR code. In this
paper, we use Rashmi et al’s construction of MSR codes
[19]. Following the background knowledge of MSR codes
in Sec. IV, the generating matrix G can be split into n
submatrices (g1, . . . , gn) and encode the original data F
into n blocks (g1F, . . . , gnF ). Notice that when d = k, the
corresponding MSR code is also an RS code.

As we know, with MSR codes each block contains α =
d−k+1 segments. To construct Carousel codes, we further
split each segment into N units, where K

N is the irreducible
fraction of αk

n . In other words, we expand gi by multiplying
each element with an identity matrix of size N × N ,

i = 1, . . . , n. For example, if g1 =

[
1 0 0 0
0 1 0 0

]
and

N = 4, we will expand g1 into ĝ1 =

[
I4 04 04 04

04 I4 04 04

]

where I4 and 04 are a 4 × 4 identity matrix and a 4 × 4
zero matrix, respectively. In this way, each segment now
contains N units in ĝi, i = 1, . . . , n, and then the block after
expansion can be represented as ĝT1 F̂ , where F̂ is obtained
from F =

[
fT1 · · · fTk

]T
by transforming the original data

in fi into an Nα × w
Nα matrix f̂i, i = 1, . . . , n, such that

F̂ =
[
f̂T1 · · · f̂Tk

]T
. Following this expansion, giF and

ĝiF̂ are equivalent, containing the same data, where the only
difference is that all bytes in the block are stored in matrices
of different sizes, and hence the original MSR code and the
new code are equivalent. In other words, the MDS property
still holds so far, and the original data can be decoded as in
(1) as well. In particular, when d = k, i.e., α = 1, there is
only one segment in each block, and hence the expansion
will work in the same way as Step 1 in Sec. V.

The reconstruction of the original MSR code can also
be applied to the new code, with a proper adjustment. For
example, with the original MSR code, we can reconstruct
g1F by multiplying a matrix G1 with data encoded from d



existing blocks, i.e.,

G1 ·




v2,1g2F
...

vd+1,1gd+1F


 . (3)

Similarly, we can expand G1 and all vectors vj,1, j =
2, . . . , d + 1 by multiplying each symbol with an identity
matrix of size N × N , and we use Ĝ1 and v̂j,1 to denote
the expanded matrix and vectors, respectively. Hence the
reconstruction can be represented as

Ĝ1 ·




v̂2,1ĝ2F̂
...

v̂d+1,1ĝd+1F̂


 . (4)

It is easy to prove that (3) and (4) are equivalent as we
replace every symbol inside (3) with a diagonal matrix, and
hence the result in (4) will naturally be ĝ1F̂ if the result in
(3) is g1F . Therefore, we can still incur the optimal network
traffic during reconstruction.

B. Symbol remapping

Similar to MSR code, we build a matrix Ĝ by con-
catenating g1, . . . , gn together, i.e., Ĝ =

[
ĝT1 . . . ĝ

T
n

]T
.

For simplicity, we use ĝij to denote the j-th row in ĝi,
j = 1, . . . , Nα, i = 1, . . . , n. Similar to Step 2 in Sec. V,
we construct Ĝ0, a submatrix of Ĝ, that is composed of
nK rows in Ĝ. In other words, in each block each segment
offers Nα · kn = K units. Assume that N0

K0
is the irreducible

fraction of K
αN = k

n . From every N0 units we choose K0

units in the way as how units are chosen in Step 2 in Sec.V.
When α = 1, there will be only N0 = N units in one
segment, and hence the same K0 = K units will be chosen
as in Step 2.

It can be proved that Ĝ0 is non-singular. We prove it by
showing that all units corresponding to the rows chosen in
Ĝ0 can decode the original data. Before expansion, we know
that all segments in any k blocks can decode the original
data, as MSR codes are MDS. After expansion, all units at
the i-th row in any k blocks can decode the original data in
the i-th row, i = 1, . . . , N . As described above, from any
N0 units we choose K0 segments in the same way as Step
2 in Sec. V. Hence, we can prove that in any row, there will
be k out of the total n blocks that choose the units in the
corresponding row, and hence the original data in this row
can be decoded. Therefore, Ĝ0 will also be non-singular.

Therefore, by applying the technique of “symbol remap-
ping” [19, Theorem 1] we can remap all rows in Ĝ that
appear in Ĝ0 into unit vectors, which can compose an
identity matrix, by multiplying the inverse of Ĝ0 on the
right, i.e. ĜĜ−10 . The new code with ĜĜ−10 as its generating
matrix is equivalent to the original code with Ĝ as the

generating matrix, since we can always linearly transform
the original data by a non-singular matrix Ĝ0:

ĜF̂ = ĜĜ−10 · Ĝ0F̂ .

In other words, encoding Ĝ0F̂ is equivalent to encoding F̂
with the original code. Hence, by remapping Ĝ0F̂ as the
original data we can get a new code that is equivalent to
the original one. As Ĝ0F̂ can always be reverted back to F̂ ,
we can achieve the same performance of MDS property and
network traffic during reconstruction as the original code,
while the operation of decoding or reconstruction does not
change. However, all rows in Ĝ0 becomes original data now
in the output of the new code. Comparing with Step 2 and
Step 3 in Sec. V, we can notice that they are simply the
special case of this remapping when d = k, as after symbol
remapping the unchosen rows in Ĝ actually become linear
combinations of rows in Ĝ0.

C. Reordering

To make sure that the original data always appear at the
beginning of each block, we can rotate all the rows in each
segment in ĜĜ−10 up in a way similar to Step 4 in Sec. V.
In other words, for any integer j ≥ 0, in block i + jN0,
all the rows in every N0 units will be rotated up by i rows,
i = 1, . . . , N0. In Fig. 4a we show an example of a block
with α = 2 and N = 3. In this block, the second and the
third unit in each segment are chosen, and hence they are
rotated up by one row and the first unit is put to the last
row in the segment.

If α > 1, there will be one more step that moves all
data units in each block to the top of the block, such that
data in all data units in a block are in the same sequence
as the original data. In Fig. 4a, for example, we move all
highlighted data units in the two segments upwards to the
top of the block. This will not change the MDS property as
only the sequence of data inside each block is changed.

During reconstruction, the coefficients in the matrix v̂i,j ,
which is used to encode the existing block for reconstruction,
will also need to be reordered corresponding to the positions
of units in the block. As shown in Fig. 4b, we divide v̂i,j
into 6 blocks and reorder these 6 blocks in the same order
as in Fig. 4a. As reordering does not change the result of
the linear transformation, we will get the same data as that
before we perform symbol remapping. Hence, the rest of the
reconstruction does not change, except that the rows in Ĝi
should be reordered correspondingly, i = 1, . . . , n. Hence,
the amount of data transferred during reconstruction is the
same as MSR codes, and the optimal network transfer is
achieved.

VII. ACHIEVING FLEXIBLE PARALLELISM

So far we have constructed Carousel codes that span
original data across all the blocks. However, once any
one block becomes unavailable, the request to read this
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Figure 4. An example of reordering of units in a block and coefficients
in v̂i,j , with 2 segments (α = 2) which contains 3 units.

block will have to be served after reconstructing it. In this
paper, we allow users to flexibly specify the degree of data
parallelism by controlling the number of blocks that contain
the original data. We use p, k ≤ p ≤ n, as a parameter
to specify the degree of data parallelism in Carousel codes.
In other words, we can construct (n, k, d, p) Carousel codes
that encode data into n blocks in which p blocks contains
the original data, while still achieving the MDS property
that any k blocks can decode the original data and incur
the optimal network traffic from d existing blocks during
reconstruction. The construction we described previously is
a special case of n = p.

To construct an (n, k, d, p) Carousel code, we first need
to have an (n, k, d) MSR code. Then we expand the MSR
code by splitting each segment into P units where K

P is the
irreducible fraction of αk

p , i.e., multiplying each element in
the generating matrix with a P ×P identity matrix. Still, we
use Ĝ to denote the generating matrix of the expanded code.
Then we make a submatrix of Ĝ by selecting K rows from
the first p blocks, as in the construction of (n = p, k, d, p)
Carousel codes before. Hence, applying symbol remapping
by multiplying the submatrix on the right of Ĝ, we can get
a new equivalent code that maintains all the properties of
the MSR code while embedding the original data in the first
p blocks.

As the original data will only stay in the first p blocks, it
is only necessary to perform reordering of data in the first
p blocks. Hence, during reconstruction, the coefficients of
the vector that encode an existing block will only need to
be reordered as well if this block is among the first p ones.

When we need to obtain all the original data, we can
directly obtain them from the first p blocks if all of them
are available. Moreover, when some blocks are not available,
we show that we can always decode the original data by
downloading k

p blocks from each of any p blocks.
Without loss of generality, we assume that among the first

p blocks, there are q available blocks, q ≤ p. If q = p,
all original data can be directly obtained without decoding.
Hence, we only consider the case of q < p. From the q
available blocks, we choose all data units. Then we use any
p− q other blocks that contain no original data to “replace”
the unavailable blocks that contain original data. Specifically,

if block i is not available (i ≤ p), we will choose the same
units from a replacing block as in Sec. VI-B. Hence, each
one of the q−p blocks replaces one unavailable block among
the first p ones and offer the same amount of data to decode
the original data.

We now prove that the data offered from the p blocks can
decode the original data. As we know, the new code obtained
after symbol remapping is equivalent to the original code.
Hence, the chosen data can decode the original data if they
can decode the original data before symbol remapping. As
in the p blocks, the units are chosen in the same way as
what we do in Sec. VI-B, they can decode the original data.

Therefore, we can see that an (n, k, d, p) Carousel code
can be constructed such that p among all the n blocks
contain the original data, and the original data can be
decoded from any p blocks. Compared to systematic MDS
codes that store all original data in k blocks, Carousel codes
achieve a flexible trade-off between data parallelism and data
availability.

VIII. PERFORMANCE EVALUATION

A. Real-World Implementation

To evaluate its performance, we have implemented
Carousel codes in C++, where all operations, including
encoding, decoding, and reconstruction, are performed by
vector/matrix multiplications on a finite field of size 28. We
have employed the Intel storage acceleration library (ISA-
L) [32] when implementing finite field arithmetic operations.
Since the construction of Carousel codes is developed from
RS codes and MSR codes, and for comparison purposes, we
have also implemented RS and MSR codes2 using ISA-L.

In our implementation, we optimize the complexity of
encoding operations of Carousel codes, by considering the
sparsity of its generating matrix. This observation is based
on the fact that in the construction of Carousel codes, each
unit can be reconstructed by k units in other k blocks before
reordering. In other words, each parity unit can be written
as a linear combination of k data units. That means that the
generating matrix of Carousel codes is sparse.

In Fig. 5, we demonstrate the generating matrices of (3, 2)
RS codes and (3, 2, 2, 3) Carousel codes. The corresponding
codes have been illustrated in Fig. 3, where the Carousel
codes are constructed from the RS codes. We can see
that with RS codes, each bit in parity blocks is a linear
combination of two bits in original data. On the other
hand, the size of the generating matrix of Carousel codes
is expanded by three times from that of RS codes, because
of the expansion we use in the construction. However, we
can observe that the generating matrix of Carousel codes is
a sparse matrix, i.e., there are only two non-zero coefficients
in rows that correspond to parity units. By considering this

2The construction of MSR codes in this paper is based on the product-
matrix construction proposed by Rashmi et al. [19].
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Figure 5. Comparison of the generating matrix of (3, 2) RS codes and
(3, 2, 2, 3) Carousel codes.

sparsity, we can reduce the encoding complexity of parity
data from a linear combination of six bits to two bits only,
the same as the original RS codes. As for MSR codes
and the corresponding Carousel codes, we can observe the
same sparsity in the generating matrix of Carousel codes,
offering the same opportunities to achieve a low encoding
complexity.

Therefore, in our implementation we can firstly construct
the generating matrix of Carousel codes as described above.
When encoding data with this generating matrix, we can
skip all multiplications with zero coefficients. The same
method can be applied to optimize the complexity of de-
coding and reconstruction operations. We will see in the
evaluation results how the size of the generating matrix
affects the complexity and further the throughput of different
operations, and how our implementation helps to save the
complexity.

Based on our implementation of Carousel codes, we have
developed a prototype on Hadoop 2.7.2 to store data with
Carousel codes. We have first developed a tool that converts
the original data into blocks encoded with Carousel codes.
As such blocks now contain both original and parity data,
we have developed a new FileInputFormat class that can
know the boundary between the original data and parity data
in each block by the parameters of Carousel codes, and read-
only original data from each block when running Hadoop
jobs.

B. Performance of encoding, decoding, and reconstruction

We first measured the performance of Carousel codes and
compared with RS and MSR codes, by running encoding
and decoding operations on Amazon EC2 instances of type
c4.4xlarge with 16 CPU cores and 30 GB memory. All
operations are run repetitively for 20 times and we show the
mean as the results. In the evaluation, we run two Carousel
codes constructed from RS codes (d = k) and MSR codes
with d = 2k−1. The remaining parameters used in the plots
are set as n = 2k for all codes, d = 2k− 1 for MSR codes,
and p = 2k for both Carousel codes.
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Figure 6. Comparison of the encoding and decoding throughput for various
values of k with n = 2k for RS codes, MSR codes (d = 2k − 1), and
Carousel codes (d = k and d = 2k − 1).

As shown in Fig. 6, we first observe that the size of
the generating matrix can affect both the encoding and
decoding throughput. Note that in the decoding operation
with Carousel codes, we use only k blocks like RS and MSR
codes even though we could have taken all data units from
p blocks, for the purpose of fair comparison. We notice that
with all values of k, the encoding and decoding throughput
of MSR codes is significantly lower than RS codes. The gap
keeps increasing with the value of k. This is because with
d = 2k − 1, MSR codes split each block into k segments,
such that the encoding complexity of each output bit will
be increased by k times. From this observation, we can
reasonably believe that Carousel codes will further limit the
throughput as blocks are further divided into more units.

However, in Fig. 6a we can see that Carousel codes
actually do not sacrifice encoding throughput compared to
corresponding RS/MSR codes with the same value of k. We
believe that this is because we take advantages of the sparsity
of the generating matrix in Carousel codes. In other words,
even though the size of the generating matrix is expanded,
the complexity of encoding one output bit does not change.

When decoding data, we decode all original data from
block 2 to block k + 1, including k − 1 data blocks and 1
parity block with RS/MSR codes. In other words, we test
the scenario where one data block is not available, because
decoding is not necessary with all data blocks available.
From Fig. 6b, we find that Carousel codes becomes slower
than the corresponding RS/MSR codes. The reason is that in
this experiment, we have k

p = 1
2 , and hence half data in each

block are parity data. When decoding data with RS/MSR
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Figure 8. Completion time of reconstruction operations for various values
of k with n = 2k for RS codes, MSR codes (d = 2k − 1), and Carousel
codes (d = k or 2k − 1, and p = n).

codes, we have k−1 data blocks already. In other words, we
only need to compute data in the first block. With Carousel
codes we can only get no more than half original data from
any k blocks and have to compute the rest original data. A
higher throughput can be achieved with Carousel codes if
more than k blocks can be visited, which we leave as our
future work.

As for the reconstruction, we first compare the traffic
incurred by the corresponding erasure code during recon-
struction. We measure the size of data obtained from existing
blocks during reconstruction and calculate the total size from
d newcomers. As expected, we can observe that the traffic
incurred by Carousel codes during reconstruction is the same
as RS or MSR codes with the same values of parameters.

Moreover, we measure the time spent at the side of
existing blocks (called helpers) and the side of the replace-
ment blocks (called newcomers) of various erasure codes.

In this experiment, we encode original data into n blocks
of size 512 MB and reconstruct the first block from d
existing blocks (from block 1 to block d + 1). In Fig. 8,
we demonstrate the time to finish the operation at helpers
and newcomers. As RS codes do not require any operation
at the side of helpers except sending data out, we only show
the time of MSR codes and the Carousel codes with the same
value of d, i.e., d = 2k− 1. We can see that once again the
Carousel codes can achieve comparable throughput at both
helpers and newcomers with the corresponding RS/MSR
codes.

C. Performance of running Hadoop jobs

In order to evaluate the performance of Hadoop jobs
running on data encoded with Carousel codes, we run
two representative performance benchmarks, terasort and
wordcount, in a Hadoop cluster with 30 slave servers
running on Amazon instances of type r3.large with 2
CPU cores, 15 GB memory, and 32 GB local SSD storage
space. For each of these benchmarks, we generate a file
of size 3 GB. With 512 MB as the block size in HDFS,
such a file will be stored in 6 blocks. Hence, we use an
(n = 12, k = 6, d = 10, p) Carousel codes to encode this
file where p = 6, 8, 10, or 12, and we end up having 12
blocks in HDFS. As a comparison, we also run the same
jobs with data encoded with a (n = 12, k = 6) systematic
RS code. All benchmarks are run repetitively for 20 times
and we show the mean with the 10th and 90th percentiles.
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Figure 9. Comparison of Hadoop jobs running on data encoded with
systematic RS codes and Carousel codes, with n = 12, k = 6, d = 10,
and p = 12.

In Fig. 9 we show the average time spent in map and
reduce tasks as well as the average job completion time
to run the two benchmarks with (12, 6, 10, 6) Carousel
codes and (12, 6) systematic RS codes. We can observe
that the two benchmarks have very different characteristics.
The major bottleneck of wordcount is at map tasks, while
terasort has a significant computational overhead at the
reduce tasks as well. As shown in Fig. 9, the average time
of map tasks can be significantly saved with Carousel codes
for both wordcount (by 46.8%) and terasort (by 39.7%).
As p = 12 and k = 6, each job with systematic RS codes can



run 6 map tasks in parallel, and each job with Carousel codes
can launch 12 simultaneous map tasks. Hence, in theory the
saving of time in the map task is 50%, and more saving can
be expected with higher storage overhead permitted. We can
observe that in wordcount the actual saving is very close to
the theoretical optimum. Because of this, the job completion
time of wordcount can be significantly reduced by Carousel
codes as most time are spent by map tasks. On the other
hand, though the reduce task takes a similar amount of time
as the map task in terasort, the job completion time can
still be saved by 15.9%.
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Figure 10. Comparison of Hadoop jobs running on data encoded with
(12, 6, 10, p) Carousel codes with various values of p, as well as on data
with 1-way and 2-way replication.

In Fig. 10, we further compare the performance of job
completion times using Carousel codes with various values
of p. We can see that with p increasing from 6 to 12, the job
completion time of both terasort and wordcount gradually
decreases. When p = 6, the performance of Carousel codes
is similar to the 1-way replication and (12, 6) systematic
RS codes in Fig. 9, since they all have 6 blocks with the
original data in HDFS. When the value of p reaches 12,
the performance of Carousel codes becomes comparable
with the 2-way replication, which cannot be achieved with
systematic MDS codes. Meanwhile, in this case Carousel
codes cost much less storage space and are able to tolerate
more failures than the 2-way replication.

D. Performance of data access in HDFS

Now we evaluate the decoding performance of Carousel
codes with more than k blocks. We measure this perfor-
mance by downloading the 3 GB file used to run the Hadoop
benchmarks above from HDFS in the same Hadoop cluster.
In order to emulate the read throughput of the enterprise
hard disk [33], we limit the read throughput of datanodes
in Hadoop by 300 Mbps. In this experiment, we encode
data with a (12, 6) systematic RS code or a (12, 6, 10, 10)
Carousel codes, or store data in 3-way replication.

For replicated data, we use the built-in hadoop fs
-get <src> <dst> command to retrieve the file, which
downloads each block from every datanode sequentially. For
the systematic RS codes and Carousel codes, we write a
program to download the original data from different blocks
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Figure 11. Comparison of the time of retrieving a 3 GB file from HDFS,
with data encoded with (12, 6) systematic RS codes and (12, 6, 10, 10)
Carousel codes, and replicated three times.

in parallel. If some block that contains original data is not
available, it will obtain parity data from another block and
decode the original data simultaneously.

In the results shown in Fig. 11, we can find that by ob-
taining data from different blocks in parallel, a significantly
amount of time can be saved. In this case, by extending
the degree of data parallelism from 6 to 10, Carousel codes
can further save the time by 29.0%. In addition, we have
introduced failures into HDFS by randomly removing one
block that contains original data. At this time, the saving
of time with the Carousel code is compromised, due to its
higher decoding complexity than RS codes. However, it still
spends less time than the RS code and 75.4% less time than
the built-in Hadoop command.

IX. CONCLUSION

Systematic MDS erasure codes have significantly saved
storage overhead without sacrificing failure tolerance. How-
ever, the degree of data parallelism of data encoded with
such codes is limited by the number of data blocks. In
this paper, we present Carousel codes that can flexibly
configure the degree of data parallelism to all the blocks at
most. We have shown that Carousel codes can achieve the
optimal storage overhead by satisfying the MDS property,
and the optimal network transfer to reconstruct the unavail-
able block as well. Through extensive experiments running
in a Hadoop cluster on Amazon EC2, we demonstrate
that most operations of Carousel codes, such as encoding
and reconstruction, are comparable with existing systematic
MDS codes, while the time to run Hadoop jobs on the
encoded data and to access the original data can both be
significantly reduced.
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