
Building Parallel Regeneration Trees in Distributed
Storage Systems with Asymmetric Links

Jun Li, Shuang Yang, Xin Wang

Abstract—Distributed storage systems provide reliable storage
service by storing data, with a certain amount of redundancy, into
a substantial number of storage nodes. In order to compensate
the data loss incurred by node failures, the lost data should be
regenerated. Tree-structured regeneration, during which storage
nodes may relay the network traffic, has shown its potential to
improve the efficiency of the regeneration process in the network
with symmetric links. In this paper, we consider tree-structured
regeneration in the network with asymmetric links, and analyze
its expected time spend during the regeneration. Moreover, we
further reduce the regeneration time by constructing multiple
parallel regeneration trees. We proposed two optimal algorithms
with polynomial time complexity, to construct multiple edge-
disjoint and multiple edge-sharing parallel regeneration trees,
respectively. We evaluate our algorithms by the simulation using
real data measured in PlanetLab. The simulation results show that
multiple parallel regeneration trees can reduce the regeneration
time by 75% and keep the file availability more than 98%.

I. INTRODUCTION

The distributed storage system (e.g., [1]), designed to provide
a large-scale and reliable data storage service, stores data into
a large number of storage nodes in a network. Depending
on application scenarios, storage nodes may vary from cluster
servers in modular data centers [2], to even ordinary computers
in peer-to-peer networks [1]. The storage nodes are subject to
fail, resulting in the data loss. Thus, the system needs to store
a certain amount of redundancy, to guarantee that a subset of
storage nodes can recover the data. MDS codes, such as Reed-
Solomon codes, maintain the recoverability property such that
any subset including at least k nodes can recover the original
data.

When a storage node fails, a replacement node, called
newcomer, should regenerate the lost data. In this process of
regeneration, if any k nodes suffice to recover the original
data, to maintain the recoverability property, the newcomer
should receive data from at least k storage nodes, called
providers in the regeneration process. Thus, the regeneration
process is bottlenecked by the slowest end-to-end link from
one provider to the newcomer, i.e., the bottleneck link. As a
matter of fact, the bottleneck link can be bypassed by the tree-
structured regeneration [3], [4] using network coding, such that
providers may encode and relay the traffic from other providers
to the newcomer, as shown in Fig. 1(a). We proposed the tree-

Jun Li, Shuang Yang, and Xin Wang (contacting author: xinw@fudan.edu.cn)
are with School of Computer Science, Fudan University, China. This work is
supported in part by NSFC under Grant No. 60702054, 863 program of China
under Grant No. 2009AA01A348, Shanghai Municipal R&D Foundation under
Grant No. 09511501200, and Shanghai Rising-Star Program under Grant No.
08QA14009.

structured regeneration in the network with symmetric links [3]
and incorporated it with regenerating codes [5] in [4].

In this paper, we step forward to consider the asymmetric
links in the network, i.e., the bandwidth in one direction of
the link is not as available as that in the other one. Lee et
al. [6] measured the bandwidth capacity between nodes in
PlanetLab [7]. The measurement results show that only 21.49%
of the measured node pairs have a symmetric end-to-end link
connecting them. Without the knowledge of link asymmetry,
the available bandwidth of the regeneration tree will not be
as good as expected, if the available bandwidth is measured
in one direction or in a round trip. For example, the available
bandwidth of the regeneration tree, i.e., the available bandwidth
of the bottleneck link, is expected to be 30Mbps in Fig. 1(a)
as links are supposed to be symmetric, but in fact it is only
15Mbps if links in the network are asymmetric in Fig. 1(b). In
this paper, we discuss the algorithm to construct the regener-
ation tree with the optimal available bandwidth. For example,
the optimal regeneration tree in the network model shown in
Fig. 1(c) achieves the available bandwidth of 20Mbps in the
regeneration process.

In addition, we further try to utilize links more effectively
during the regeneration by constructing multiple parallel re-
generation trees. For example, the available bandwidth in the
regeneration process can be further improved to 30Mbps in
Fig. 1(d), if we construct t regeneration trees (t > 1) which
transmit 1

t of the whole regeneration traffic in parallel, respec-
tively. Though the minimum available bandwidth of one parallel
regeneration tree may be worse than the that of the single
regeneration tree, the parallel transmission can help to reduce
the time spent during the regeneration by 33%. Moreover, if
some edges of several trees may share the same end-to-end link,
the regeneration time can be further reduced by 25%, as shown
in Fig. 1(e). In this paper, we propose two optimal polynomial
algorithms to construct t edge-disjoint and edge-sharing parallel
regeneration trees, respectively.

We run extensive simulations to evaluate the performance
of our algorithms. We simulate a distributed storage system
based on real data of available bandwidth and node behaviors
measured in PlanetLab. Our simulation results show that using
multiple parallel regeneration trees can reduce regeneration
time to 19% of that spent by the conventional star-structured
regeneration, and to 45% of that using a single regeneration
tree. In the simulation of a dynamic network environment, we
observe that multiple parallel regeneration trees can keep the
file availability of at least 98%.

The remainder of this paper is organized as follows. In

(a) An optimal regeneration
tree in a network with sym-
metric links.

(b) A regeneration tree in
a network with asymmetric
links.

(c) An optimal regeneration
tree in a network with asym-
metric links.

(d) Two parallel regeneration
trees in a network with asym-
metric links.

(e) Two edge-sharing parallel
regeneration trees in a net-
work with asymmetric links.

Fig. 1. Examples of regeneration trees in the networks with symmetric and asymmetric links.

Sec. II, we introduce the background, and describe in detail
the problem of the ignorance of bandwidth asymmetry and the
advantage of multiple regeneration trees. Sec. III introduces the
network model and discusses the construction and the expected
regeneration time of the optimal regeneration tree. In Sec. IV,
we discuss the construction algorithms of t edge-disjoint and
t edge-sharing parallel regeneration trees. We introduce the
simulation results in Sec. V. Finally, Sec. VI concludes this
paper.

II. PRELIMINARIES

A. Redundancy and linear network coding

In the distributed storage system, data are stored in a number
of storage nodes. A storage node may save a whole file or a part
of a file. Since the nodes may leave the network temporarily
or even fail, data should be stored with redundancy such that a
subset of storage nodes can recover the original data. If the size
of a file is M bits, the storage nodes in the network may store
totally 3M

2 bits.Thus, M2 bits are stored as the redundancy and
the redundancy rate r is 1.5.

Compared with storing replicas of the original data in the
storage nodes, encoding the original data into coded blocks can
improve the data availability [8]. Maintaining the recoverability
property with a high probability, Acedanński et al. [9] intro-
duced randomized linear network coding as a way of achieving
coded blocks. Dimakis et al. [10] presented deterministic linear
network coding to achieve the redundancy. If a file is divided
into k blocks, B1, B2, . . . , Bk, a coded block F is a linear
combination of the k blocks on a Galois field F2q . q bits are
regarded as a symbol on F2q and a block is then a sequence of
symbols on F2q . Thus we have

F =

k∑
i=1

aiBi, (1)

where (a1, a2, . . . , ak)
T is the randomly-generated encoding

vector, ai ∈ F2q , i = 1, 2, . . . , k. If q is large enough, any
k coded blocks are sufficient to recover the original blocks
with high probability. Given k coded blocks and their encoding

vectors, we can reconstruct the original blocks by solving a
linear system of k equations.

Without loss of generality, we assume that each storage node
stores one coded block, such that any k storage nodes can
recover the original data. Apart from the coded block, a storage
node has to store the corresponding encoding vector. However,
this overhead can be ignored if the block is large enough. Since
the size of one coded block is equal to the size of one original
block, the redundancy rate is n

k if there are n coded blocks in
the network.

B. Tree-structured data regeneration

Nodes may fail in the distributed storage system and thus the
data loss may be incurred. The redundancy rate will decrease
or even turn to zero if node failures are not handled. In order
to regenerate the lost coded block, the system should select
a node, called newcomer, to replace the failed storage node.
The newcomer should receive k′ coded blocks, F1, F2, . . . , Fk′ ,
from k′ active storage nodes, called providers, and get a new
coded block F0 as a linear combination of the received blocks:

F0 =
k′∑
i=1

a′iFi, (2)

a′i ∈ F2q , i = 1, 2, . . . , k. To keep the recoverability property,
k′ should be at least k. However, considering the bandwidth
cost and the node behaviors, a small number of providers is
preferred in the distributed storage system [11], so in this paper
we only considers the scenario that k′ = k. Wu et al. [5]
showed that the minimum regeneration traffic when k′ = k is
M bits, the size of the original file. This optimal traffic can be
achieved easily when the newcomer receives k coded blocks
from k storage nodes.

Even though the minimum regeneration traffic has been
achieved, we can further reduce the regeneration time by ex-
ploiting the bandwidth diversity. In an overlay storage network,
links between storage nodes usually enjoy different available
bandwidth. Conventionally the regeneration is carried out in
a manner called star-structured regeneration. For example,
Fig. 1(a) shows a regeneration in a network with symmetric

links, in which V0 is the newcomer and other three nodes are
providers, i.e., k = 3. If the newcomer receives the coded
blocks directly from the three providers, the transmission will
finish when the newcomer has received the coded block from
V3, and the regeneration time is thus M bits

3×5 Mbps .
Moreover, we can allow providers to relay the regeneration

traffic. The darkened directed edges in Fig. 1(a) indicate how
data are transmitted in the network. For example, V2 receives
data from V3, encodes the received blocks with the coded
blocks stored by itself, and then sends the coded data to the
newcomer as long as there are data available to send, rather
than after the whole block is encoded. The edges used in
the transmission form a spanning tree over the newcomer and
the providers, called regeneration tree. The bottleneck edge of
a regeneration tree is the edge with the minimum available
bandwidth, and the available bandwidth of a regeneration tree
is thus the available bandwidth of the bottleneck edge. In
Fig. 1(a), (V1, V0) and (V3, V2) are bottleneck edges and the
regeneration time becomes one forth of the star-structured
regeneration.

C. Regeneration in the network with asymmetric links

The links in the network model in Fig. 1(a) are all symmetric,
i.e., the available bandwidth in one direction is the same as the
that in the other direction, but in reality, this is improbable. The
measurement in PlanetLab [6] shows that at least 78.51% of
links are asymmetric. Fig. 1(b) shows a network model with
asymmetric links. The available bandwidth of each edge in
Fig. 1(a) is the average available bandwidth of corresponding
edges in two directions in Fig. 1(b). If the link asymmetry
is neglected and the bandwidth is measured in a round trip,
the network model will still be the same as Fig. 1(a), but the
available bandwidth of the regeneration tree will be reduced to
15Mbps, as shown in Fig. 1(c).

In addition, multiple parallel links are unlikely to saturate
the available bandwidth of the node in the Internet, because
the end-to-end bottleneck usually occurs in the intra-AS or
inter-AS link [12]. Thus we can further use the remaining
available links and even their remaining available bandwidth to
construct more regeneration trees in the network. For example,
two parallel regeneration trees are constructed in Fig. 1(d). The
two trees have the available bandwidth of 20Mbps and 15Mbps,
respectively. If we let the first tree regenerates 57.1% of the
coded block and the second tree regenerates the other 42.9%
in parallel, the regenerate time will be reduced to M bits

3×35 Mbps .
However, this way of constructing multiple parallel trees by
the unequal partition of coded blocks requires each tree to
know the available bandwidth, which changes frequently in the
network, of all other trees. If we just divide the coded block into
two equal parts, the regeneration time will still be M bits

3×2×15 Mbps .
Moreover, since the actual transmission rate in a regeneration
tree is the available bandwidth of its bottleneck edge, there is
spare bandwidth in most edges. The two edge-sharing parallel
regeneration trees in Fig. 1(e) achieve the regeneration time as
little as M bits

3×2×20 Mbps , even though the coded blocks are equally
partitioned for the two trees. Thus in this paper, we first discuss

how to construct the optimal regeneration tree in the network
with asymmetric links and analyze its expected regeneration
time in Sec. III. Then in Sec. IV, we discuss the construction of
edge-disjoint and edge-sharing parallel regeneration trees with
the equal partition of coded blocks.

III. TREE-STRUCTURED REGENERATION

A. Network model and the regeneration tree

Assume linear network coding is used to produce redundancy
in a distributed storage system. The original file is divided
into k blocks and encoded into more than k coded blocks.
Each storage node stores one coded block. In a regeneration, a
newcomer receives k coded blocks from k providers. We define
the node set V (k) = {V0, V1, . . . , Vk}, where V0 denotes the
newcomer and other nodes denote the providers.

In the network, links between nodes are asymmetric. We
define two directed edges between two nodes Vi and Vj , i 6= j.
The edge (Vi, Vj) denotes the end-to-end link from Vi to Vj .
The edge set E(k) = {(Vi, Vj)|i, j ∈ [0..k], i 6= j}. The weight
of (Vi, Vj), ω(Vi, Vj), denotes the available bandwidth from Vi
to Vj .

In this paper, the network model is represented as a directed
complete graph G(k) = (V (k), E(k), ω). We assume that for
each node in V (k), multiple connections with some other nodes
can not saturate its available bandwidth capacity. Fig. 1(b) is
an example of the network model G(3).

We can construct a regeneration tree in a network model
G(k). In a symmetric network model such as Fig. 1(a), a
regeneration tree is a spanning tree rooted at the newcomer
[3], as the newcomer should receive coded blocks from all the
providers. Similarly, we give the definition of the regeneration
tree in G(k).

Definition 1: In a network model G(k), a regeneration tree
is a reverse arborescence rooted at the newcomer, i.e., a directed
spanning tree rooted at the newcomer such that the edges are
directed towards the newcomer.

Since every edge in a regeneration tree in G(k) is directed
towards the newcomer, every provider has a directed path to the
newcomer. Thus the newcomer can receive coded data from all
the providers in G(k). Moreover, as we show in Fig. 1(b) and
Fig. 1(c), the regeneration time is bottlenecked by the minimum
edge in the regeneration tree. We do not count the initial delay,
i.e., the time from establishing connections to the arrival of the
first byte at the newcomer, since the size of the coded block is
usually large enough in distributed storage systems.

Definition 2: The available bandwidth of a regeneration tree
T in G(k) is the weight of the minimum edge in T .

In order to reduce the regeneration time, our objective is to
find the optimal regeneration tree in G(k), i.e., the regeneration
tree with the maximum available bandwidth. This is equivalent
to finding the maximum bottleneck spanning tree in a graph.
Gabow and Tarjan [13] proposed an algorithm of this problem
by the dichotomic search, shown in Algorithm 1. The time com-
plexity of Algorithm 1 is O(|E(k)| log(V (k))) = O(k2 log k).

Algorithm 1 Splitting algorithm for the problem of the
optimal regeneration tree in G(k) [13]. Let E(k) =
{e1, e2, . . . , ek(k+1)}, where ω(e1) ≥ ω(e2) ≥ . . . ≥
ω(ek(k+1)).

1: θ1 ← 1, θ2 ← |E(k)|
2: while θ1 6= θ2 do
3: m← b 12 (θ1 + θ2)c
4: E1 ← {e|ω(em) ≤ ω(e), e ∈ E(k)}
5: if every node in G(V (k), E1) has a directed path towards

V0 then
6: θ2 ← m
7: else
8: θ1 ← m+ 1
9: end if

10: end while
11: λ∗ ← ω(eθ1)
12: return a spanning tree in G(V (k), {e|ω(e) ≥ λ∗})

B. Analysis of regeneration time

In this section, we investigate the gain of the optimal regen-
eration tree, from the perspective of the regeneration time. For
the tree-structured regeneration, we have shown in Sec. III-A
that the regeneration time is bottlenecked by the minimum edge
in the regeneration tree.

Definition 3: The regeneration time is the ratio of the size
of a coded block to the available bandwidth of the regeneration
tree.

Given a network model G(k) = {V (k), E(k), ω}, if we have
known the distribution function of ω, we can know the expected
value of the regeneration time. If the size of the original file
is M bits, the size of a coded block is thus Mk bits, so the
regeneration time is M

k·ω(eb) , where eb is the bottleneck edge of
the optimal regeneration tree.

Property 1: If eb = ei in G(k), i.e., eb is the i-th maximum
edge in E(k), then k ≤ i ≤ k2 + 1.

Proof: In G(k) there are totally k + 1 nodes and a
regeneration tree thus has k edges, so eb is at most the k-th
maximum edge. On the other hand, since G(k) is a complete
graph, every provider has k edge-disjoint directed paths towards
the newcomer. Thus no provider will be disconnected from
the newcomer until at least k edges in G(k) are removed, so
i ≤ k(k + 1)− k + 1 = k2 + 1.

Let p(k + 1, i) denote the probability that eb = ei in G(k),
and E[i, k(k + 1)] the expected weight of the i-th maximum
edge in E(k). The expected regeneration time of the tree-
structured regeneration is

ttree =

k2+1∑
i=k

M
k
· p(k + 1, i)

E[i, k(k + 1)]
(3)

Given the distribution of ω, we can get E[i, k(k + 1)] by
order statistics [14]. Assume F (x) and f(x) are curriculum
distribution function and probability density function of ω,

respectively.

E[i, k(k + 1)] =
+∞∫
0

x · n!F
k(k+1)−i(x)[1− F (x)]i−1f(x)
(k(k + 1)− i)!(i− 1)!

dx. (4)

Now we discuss the distribution of p(k + 1, i) in G(k).
According to Property 1, p(k + 1, i) = 0 when i < k or
i > k2 + 1.

Lemma 1: Let Q(l, j) denote the number of directed graphs
containing l labeled nodes and j directed edges, such that every
node in the graph has a directed path towards one specific root
node. When l − 1 ≤ j ≤ l(l − 1),

Q(l, j) =

(
l(l − 1)

j

) j∑
i=l−1

p(l, i). (5)

Otherwise Q(l, j) = 0.
Proof: When j < l−1, such a graph can not be connected.

When j > l(l − 1), it is impossible since there are at most
l(l − 1) edges in the graph. Therefore, Q(l, j) = 0 when j <
l − 1 or j > l(l − 1).

Now we discuss the case when l − 1 ≤ j ≤ l(l − 1). For
one graph satisfying the condition, we let the weight of the j
edges be l(l − 1), l(l − 1) − 1, . . ., and l(l − 1) − (j − 1),
respectively. Then we add l(l − 1) − j edges into the graph
to make it become a complete graph, and let the weight of
the added edges be 1, 2, . . ., and l(l − 1) − j, respectively.
Thus we can map this graph to j!(l(l − 1) − j)! G(l − 1)s,
in which eb = ej′ , l − 1 ≤ j′ ≤ j. Since the number of the
graphs satisfying the condition is Q(l, j), the number of G(k),
in which eb = ej′ , l − 1 ≤ j′ ≤ j, is Q(l, j)j!(l(l − 1)− j)!.

On the other hand, given a network model G(k), the prob-
ability that eb = ej′ , l − 1 ≤ j′ ≤ j is

∑j
i=l−1 p(l, j), so the

number of such G(k)s is (l(l − 1))!
∑j
i=l−1 p(l, j).

Connecting the two parts above, we have the following
equation:

Q(l, j)j!(l(l − 1)− j)! = (l(l − 1))!

j∑
i=l−1

p(l, j) (6)

Therefore, Q(l, j) =

(
l(l − 1)

j

)
j∑

i=l−1
p(l, i).

Theorem 1: If k ≤ i ≤ k2 + 1, p(k + 1, i) =

1
k+1

k∑
l=1

(
k − 1
l − 1

)
R(k, l, i) + k−1

k+1

k−1∑
l=1

(
k − 2
l − 1

)
R(k, l, i)(

k(k + 1)− 1
i− 1

) , (7)

where R(k, l, i) =∑
j1 + j2 + j3 = i− 1

j1, j2, j3 ≥ 0

(
l(k + 1− l)

j3

)
Q(l, j1)Q(k+1− l, j2). (8)

Proof: Assume in G(k) eb = ei, k ≤ i ≤ k2 + 1. There
are two possibilities of the position of ei.

a. ei points to the newcomer, i.e., ei = (Vt, V0), 1 ≤ t ≤ k.
The probability of this case is apparently k

k(k+1) = 1
k+1 . Let

E = {e1, e2, . . . , ei}. In this situation, ei is the bottleneck edge
if and only if in G(V (k), E), for each nodes except V0 and Vt,
there are at least one directed path towards Vt or V0. Assume
there are l nodes, including Vt itself, having directed paths
towards Vt, 1 ≤ l ≤ k. We define V(1) to be the set of these
l nodes and V(2) the set of other k + 1− l nodes. Apart from
Vt, the number of selecting l − 1 nodes from k − 1 providers

into V(1) is
(

k − 1
l − 1

)
. To make ei be the bottleneck edge, the

edges in E/{ei} can be between two nodes in V(1), or between
two nodes in V(2), or from one node in V(2) to one node in
V(1). Assume there are j1 edges between two nodes in V(1),
j2 edges between two nodes in V(2), and j3 from one node in
V(2) to one node in V(1). According to Lemma 1, the number

of such assignments is
(

l(k + 1− l)
j3

)
Q(l, j1)Q(k + 1 −

l, j2). Summarizing the numbers of all possibilities of j1, j2
and j3, we get the total number of the possibilities of the edge
assignments and denote it by R(k, l, i). Considering the number
of assigning i−1 edges in E−{ei} into k(k+1)−1 positions

is
(

k(k + 1)− 1
i− 1

)
and summarizing all the possibilities of

V(1) and V(2), we get the probability that Ei is the bottleneck
edge when ei = (Vt, V0) is

pa(k + 1, i) =

k∑
l=1

(
k − 1
l − 1

)
R(k, l, i)(

k(k + 1)− 1
i− 1

) . (9)

b. The other case is that ei is from one provider to another
provider, i.e., ei = (Vt1 , Vt2), 1 ≤ t1, t2 ≤ k, t1 6= t2. The
probability of this case is k(k−1)

k(k+1) = k−1
k+1 . In G(V (k), E), we

let V(1) to be the set of the nodes which have a directed path
towards Vt1 , including Vt1 itself, and V(2) the set of other nodes
in V (k). Assume there are l nodes in V(1), 1 ≤ l ≤ k +
1 − 2 = k − 1, so the number of the possibilities of selecting
l − 1 nodes in V(1) − {Vt1} from k + 1− 3 = k − 2 nodes in

V (k) − {V0, Vt1 , Vt2} is
(

k − 1
l − 1

)
. Similar with the proof

above, when ei = (Vt1 , Vt2), the probability that Ei is the
bottleneck edge is

pb(k + 1, i) =

k−1∑
l=1

(
k − 2
l − 1

)
R(k, l, i)(

k(k + 1)− 1
i− 1

) . (10)

Notice that ei is impossible to be from V0 to another node,
because the newcomer just receives data from other nodes in
the regeneration process. Therefore, p(k+1, i), the probability
that ei is the bottleneck edge in G(k) is

p(k + 1, i) =
1

k + 1
pa(k + 1, i) +

k − 1

k + 1
pb(k + 1, i). (11)

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

k (#provider)

ex
pe

ct
ed

 r
eg

en
er

at
io

n
tim

e
(s

ec
.)

STAR
TREE

Fig. 2. Expected regeneration time of STAR and TREE in G(k). The available
bandwidth of the link satisfies the uniform distribution U[0.3Mbps, 140Mbps].

For the star-structured regeneration in a network model G(k),
however, it only uses the k edges pointing to the newcomer V0,
so the bottleneck edge is clearly the minimum edge among the
k edges. Thus the expected regeneration time is

tstar =
M
k
· 1

E[k, k]
(12)

Fig. 2 shows the expected regeneration time of the tree-
structured regeneration (TREE) and the star-structured regen-
eration (STAR). We assume the available bandwidth of links
satisfies a uniform distribution of U[0.3Mbps, 140Mbps]. The
size of the original file is 4GB. We calculate the expected
regeneration time of TREE and STAR by (3) and (12). We
notice that compared with STAR, the regeneration time can be
reduced by more than 90% when k ≥ 12.

IV. MULTIPLE REGENERATION TREES

In this section, we further reduce the regeneration time by
utilizing more links in the network to construct multiple re-
generation trees, that works in parallel during the regeneration.
For example, if we construct two parallel regeneration trees
in a network model G(k), we can divide the coded block in
each provider into two parts. Since every regeneration tree is
a spanning tree, every provider should belong to both trees.
Therefore, the newcomer can receives the first part of the
regenerated block from the first tree, and the second part from
the second tree. The regeneration time is thus determined by
the regeneration tree with more regeneration time.

Assume we can construct t parallel regeneration trees,
T1, T2, . . . , Tt. Let ωi denote the available bandwidth of Ti,
i = 1, 2, . . . , t. In this paper, we consider the equal partition
of the coded block and thus construct t regeneration trees that
maximize min{ω1, ω2 . . . , ωt}. We start from the construction
algorithm of the edge-disjoint parallel regeneration trees, and
then extend it to construct edge-sharing parallel regeneration
trees.

A. Edge-disjoint parallel regeneration trees

We start from constructing the optimal t edge-disjoint par-
allel regeneration trees in G(k) = (V (k), E(k), ω). Given a
constant t, the goal is to find t edge-disjoint trees in G(k),
denoted by T1, T2, . . . , Tt. Ti = (V (k), Ei, ω), Ei ⊂ E(k), i =

1, 2, . . . , t. For each tree Ti, i = 1, 2, . . . , t, it is a regeneration
tree such that every provider in G(k) has a directed path
towards the newcomer V0. Ei ∩ Ej = ∅ when i 6= j. Define
ωi as the available bandwidth of Ti. Since the t trees are edge-
disjoint, the available bandwidth of each tree will not interfere
with other trees. Since each regeneration tree is responsible for
regenerating one equal part of the coded block, the regeneration
time of the whole coded block is thus the regeneration time of
the regeneration tree with the minimum available bandwidth,
i.e.,

tmult =
M
kt
· 1

min
1≤i≤t

{ωi}
. (13)

The problem of achieving the optimal regeneration time is
equivalent to that of maximizing min

1≤i≤t
{ωi}. Because ωi =

min
e∈Ei
{ω(e)}, it is further equivalent to the problem of maxi-

mizing min
e∈Ei,1≤i≤t

{ω(e)}.

Definition 4: Let E∗ =
t⋃
i=1

Ei be the edge set of the t edge-

disjoint parallel regeneration trees. The available bandwidth λ∗

is min
e∈E∗
{ω(e)}.

Notice that there can be many trees with the same available
bandwidth. However, since the regeneration time depends on
the weight of the bottleneck edge, rather than the structure of
the regeneration tree, we first find the maximum λ∗ and the cor-
responding bottleneck edge, and then construct t regeneration
trees from the edges with weight larger than λ∗.

The size of feasible solution space is |E(k)|, since λ∗ equals
the weight of one edge in E(k). We design a dichotomic algo-
rithm, similar with Algorithm 1, to find the available bandwidth
λ∗ in the network model G(k) which runs in O(t2k4 log k)
time. Assuming t edge-disjoint parallel regeneration trees exist
in G(k), the t trees with the maximum λ∗ are constructed in
Algorithm 2.

Algorithm 2 Splitting algorithm for the problem of finding t
edge-disjoint parallel regeneration trees in G(k).

1: θ1 ← 1, θ2 ← |E(k)|
2: while θ1 6= θ2 do
3: m← b 12 (θ1 + θ2)c
4: E1 ← {e|ω(em) ≤ ω(e), e ∈ E(k)}
5: if t edge-disjoint parallel regeneration trees exist in

G(V (k), E1) then
6: θ2 ← m
7: else
8: θ1 ← m+ 1
9: end if

10: end while
11: λ∗ ← ω(eθ1)
12: return t regeneration trees in G(V (k), {e|ω(e) ≥ λ∗})

From Line 2 to Line 10, we search the possible bottleneck
weight value dichotomically. Since there are altogether |E(k)|
different values, all steps run at most log |E(k)| times. Line 5

checks the existence of t mutually edge-disjoint spanning trees,
which has been studied by Tarjan [15]. The time complex-
ity of this step is O(t2|E(k)|2). In a word, the dichotomic
search can find the maximum λ∗ in O(t2|E(k)|2 log |E(k)|) =
O(t2k4 log k) time. After getting λ∗, we can find t edge-
disjoint regeneration trees with available bandwidth no less
than λ∗ by the algorithm proposed in [16]. The time com-
plexity of Line 12 is O(log(|V (k)|t) · |V (k)|2 · |E(k)| ·
log(|V (k)|2/|E(k)|) = O(log(kt)k4). Thus, the overall time
complexity is O(t2k4 log k).

Theorem 2: Algorithm 2 produces t edge-disjoint parallel re-
generation trees that achieve the maximum available bandwidth.

Proof: Since the correctness of Line 12 has been in-
vestigated in [16], we will show the correctness of the di-
chotomic search. If λ∗ is the maximum available bandwidth, it
is impossible to construct t edge-disjoint parallel regeneration
trees in graph G(V (k), {e|e ∈ E(k), ω(e) ≥ ω(eθ2)}), where
ω(eθ2) > λ∗, otherwise the bottleneck ≥ ω(eθ2) > λ∗. On
the other hand, it is always possible to construct t edge-
disjoint parallel regeneration trees in graph G(V (k), {e|e ∈
E(k), ω(e) ≥ ω(eθ1)}), where ω(eθ1) ≤ λ∗. Therefore, λ∗

is the threshold whether t parallel edge-disjoint regeneration
trees exist. Since there are finite feasible solutions, the available
bandwidth λ∗ can be found by the dichotomic search.

B. Edge-sharing parallel regeneration trees
Algorithm 2 shows how to construct multiple edge-disjoint

parallel regeneration trees. However, for each edge in a regen-
eration tree, its available bandwidth will not be used up until
it is the bottleneck edge of the tree. Thus though many links
in the network may be used, the available bandwidth of these
links is not fully utilized. The algorithm in this section allows
links to be shared by several regeneration trees, so as to fully
utilize the available bandwidth.

Given t regeneration trees, Ti = (V (k), Ei), Ei ⊂ E(k), i =
1, 2, . . . , t, in G(k) = (V (k), E(k), ω), we assume the avail-
able bandwidth of Ti is ωi. There are t edge-sharing parallel
regeneration trees if and only if ∀e ∈ E(k),

∑
Ei3e

ωi ≤ ω(e).

The regeneration time is also bottlenecked by the regeneration
tree with the minimum available bandwidth, so (13) still holds
and our objective remains finding the maximum λ∗.

Property 2: Given the optimal available bandwidth λ∗

of t edge-sharing parallel regeneration trees in G(k) =
(V (k), E(k), ω), for any edge e ∈ E(k), define nλ∗(e) =

bω(e)λ∗ c. nλ∗(e) ≥ |{Ti(V (k), Ei)|e ∈ Ei, i = 1, 2, . . . , t}|.
Proof: For each e ∈ E(k), ω(e)

λ∗ ≥ ω(e)
min
Ei3e

{ωi} ≥

|{Ti(V (k), Ei)|e ∈ Ei, 1 ≤ i ≤ t}|. Considering the size of
a set is always an integer, the floor can be achieved.

According to Property 2, if there exist t edge-sharing parallel
regeneration trees with available bandwidth λ∗, at most nλ∗(e)
connections can be established in one edge e. In other words,
we can split e into nλ∗(e) edges, each with available bandwidth
no worse than λ∗. The problem then becomes checking whether
t edge-disjoint parallel regeneration trees exist, and thus can be
solved by [16].

On the other hand, we might place at most t connections into
one edge in the graph, since we only construct t edge-sharing
parallel regeneration trees. Define the feasible solution space
W =

⋃
e∈E(k)

{ω(e), 12ω(e),
1
3ω(e), . . . ,

1
tω(e)}, as the available

bandwidth of at least one edge should be used up. Clearly,
|W | ≤ t|E(k)|. Let W = {w1, w2, . . . , w|W |}, w1 ≥ w2 ≥
. . . , w|W |}.

Similar to the algorithm for finding multiple edge-disjoint
parallel regeneration trees, we can use a dichotomic method
in Algorithm 3 to find the maximum available bandwidth
λ∗ in G(k), which runs in O(t2|E(k)|2 log(t|E(k)|)) =
O(t2k4 log(tk)) time as O(|W |) = O(t|E(k)|). We assume
one spanning tree exists in G(k), since we can split the only
one tree into t trees by splitting each of its edges into t edges.

Algorithm 3 Splitting algorithm for the problem of finding t
edge-sharing parallel regeneration trees in G(k).

1: θ1 ← 1, θ2 ← |W |
2: while θ1 6= θ2 do
3: m← b 12 (θ1 + θ2)c
4: Let E1 be a multiset of S(wm) = {e × nwm(e)|e ∈

E(k)}
5: if t edge-disjoint parallel regeneration trees exist in

G(V (k), E1) then
6: θ2 ← m
7: else
8: θ1 ← m+ 1
9: end if

10: end while
11: λ∗ ← wθ1
12: return t regeneration trees in G(V (k), S(λ∗))

Theorem 3: Algorithm 3 produces t edge-sharing parallel re-
generation trees that achieve the maximum available bandwidth.

Proof: If λ∗ is the maximum available bandwidth, it
is impossible to construct t edge-sharing spanning trees in
graph G(V, Swθ2), where wθ2 > λ∗, otherwise the available
bandwidth ≥ wθ2 > λ∗. Also, it is always possible to construct
t edge-sharing parallel regeneration trees in graph G(V, Swθ1),
where wθ1 ≤ λ∗, since Sλ∗ ⊆ Swθ1 . Therefore, λ∗ is the
threshold whether t edge-sharing parallel regeneration trees
exist. Since there are finite feasible solutions, the maximum
available bandwidth λ∗ can be found by the dichotomic search.

V. SIMULATION

In this section, we make extensive empirical studies to
evaluate the performance of the tree-structured regeneration
algorithms based on the real data of available bandwidth [17]
and node behaviors [18] measured in PlanetLab [7], a global
research network in which most links are asymmetry.

The main results we observe from the simulation results
include:
• The regeneration time can be greatly reduced by construct-

ing multiple parallel regeneration trees. Because of this,

0 2 4 6 8 10 12 14

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

available bandwidth x (Kbps)

F
(x

)

(a) available bandwidth

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

asymmetry factor α

F
(α

)

(b) asymmetry factor

Fig. 3. Curriculum distribution functions of available bandwidth and asym-
metry factor in PlanetLab.

the file can be regarded as almost available in a dynamic
network environment with the node join and departure.

• The edge-sharing algorithm performs better than the edge-
disjoint algorithm, both on the available bandwidth and on
the resistance to the high asymmetry factor.

A. Static network environment

We first simulate a static network, i.e., storage nodes in
the network are supposed to be static and there is no node
join/departure during the regeneration. The network topology is
constructed based on real data of available bandwidth measured
in PlanetLab by S3 (Scalable Sensing Service) [17]. If k
providers are used in the regeneration process, we construct
a network containing one newcomer and k providers, and then
we assign the weight of each link, using the available bandwidth
measured in S3 by the tool of pathChirp [19] on 16:28:10
(Pacific Time), Nov. 11, 2009.

We use the asymmetry factor to denote the asymmetry of
links. Assume the available bandwidth in the two directions of
one link is BW1 and BW2, the asymmetry factor is

α =
|BW1 − BW2|

max{BW1,BW2}
. (14)

It is clear that 0 ≤ α ≤ 1. Fig. 3 shows the curriculum
distribution functions of the available bandwidth and the asym-
metry factor in PlanetLab, respectively. We use the algorithms
mentioned in this paper to construct regeneration tree(s) in the
network and the simulation is repeated for 1000 times.

The algorithms we compare contain star-structured regener-
ation (STAR), tree-structured regeneration (TREE) in Sec. III,
for the case of single regeneration tree. For the case of
multiple parallel regeneration trees, we compare our optimal
algorithms proposed in Sec. IV and two greedy algorithms.
Our optimal algorithms are denoted as t-optimal-edge-disjoint
algorithm (t-OPT-disjoint), and t-optimal-edge-sharing algo-
rithm (t-OPT-sharing). The greedy algorithms are denoted as
t-greedy-edge-disjoint algorithm (t-GREEDY-disjoint) and t-
greedy-edge-sharing algorithm (t-GREEDY-sharing).

Now we introduce the greedy algorithms used in the simu-
lation. Let t=2, for example. For the 2-GREEDY-disjoint algo-
rithm, the first regeneration tree is constructed as the optimal
regeneration tree by TREE, and then we remove the edges

in the first regeneration tree from the network. The second
regeneration tree is then constructed by TREE on the network
with remaining edges. For the 2-GREEDY-sharing algorithm,
the edges of the two parallel regeneration trees can share
the same link. Thus after constructing the first regeneration
tree by TREE, we decrease the weight of edges in the first
regeneration tree by the available bandwidth of the first tree
and then construct the second tree by TREE. (13) still holds
for the greedy algorithms, as we partition the coded blocks into
size-equal blocks.

4 5 6 7 8 9 10
0

5

10

15

x 10
4

k (#provider)

re
ge

ne
ra

tio
n

ra
te

 (
K

bp
s)

STAR
TREE
2−OPT−disjoint
2−OPT−sharing
2−GREEDY−disjoint
2−GREEDY−sharing

(a) 1-tree vs. 2-tree

5 10 15 20

0.5

1

1.5

2

2.5

x 10
5

k (#provider)

re
ge

ne
ra

tio
n

ra
te

 (
K

bp
s)

2−OPT−disjoint
2−OPT−sharing
3−OPT−disjoint
3−OPT−sharing

(b) 2-tree vs. 3-tree

Fig. 4. Regeneration rate with the increasing of the number of providers,
when α ∈ (0, 0.6].

For fairness, we define the regeneration rate in G(k) as k× t
times of the available bandwidth, and thus the regeneration time
is the ratio of the size of the original file to the regeneration rate.
We compare the regeneration rate in Fig. 4, in which the asym-
metry factor of links is selected in (0, 0.6]. We show in Fig. 4(a)
the regeneration rate of 1-tree algorithms (STAR and TREE)
and 2-tree algorithms (2-OPT/GREEDY-disjoint/sharing). We
can see for all algorithms except STAR, the regeneration rate
increases with k, because the tree-structured regeneration can
bypass the slow links in the network, while STAR has to suffer
from the link with the minimum bandwidth from one provider
to the newcomer. Compared with STAR, TREE can increase
the available bandwidth by a factor of 14 when k = 10, and
the regeneration rate of 2-OPT-disjoint and 2-OPT-sharing can
even achieve 22.9 and 23.5 times of STAR. On the other hand,
the regeneration rate of 2-OPT-disjoint and 2-OPT-sharing is
1.6 and 1.7 times of the regeneration rate of TREE. Because
we use more links by constructing two regeneration trees, the
regeneration rate of the second tree can not be as good as the
regeneration rate of the single tree. Therefore, 2-tree algorithms
can not achieve twice of the regeneration rate of TREE.

Moreover, we notice that though our optimal algorithms
perform better than the greedy algorithm, the curves of greedy
algorithms converge to the curves of the corresponding optimal
algorithms. However, we still think our optimal algorithms is
better for practical distributed storage systems. First, consider-
ing the computational cost of encoding and decoding and the
cost of establishing and maintaining connections in the network,
distributed storage systems usually prefer a smaller k in prac-
tical. Second, the greedy algorithms have to construct parallel

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16
x 10

4

maximum asymmetry factor α
max

re
ge

ne
ra

tio
n

ra
te

 (
K

bp
s)

STAR
TREE
2−OPT−disjoint
2−OPT−sharing
2−GREEDY−disjoint
2−GREEDY−sharing

(a) 1-tree vs. 2-tree

0.2 0.4 0.6 0.8 1
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

5

maximum asymmetry factor α
max

re
ge

ne
ra

tio
n

ra
te

 (
K

bp
s)

2−OPT−disjoint
2−OPT−sharing
3−OPT−disjoint
3−OPT−sharing

(b) 2-tree vs. 3-tree

Fig. 5. Regeneration rate with the maximum asymmetry factor αmax, when
k = 10.

regeneration trees one after another, so it may incur additional
cost of regeneration time and bandwidth measurement.

We show the results in Fig. 4(b) when we employ more par-
allel regeneration trees during the regeneration. 3-OPT-disjoint
and 3-OPT-sharing can achieve regeneration rate 1.3 and 1.4
times of 2-OPT-sharing. However, we observe interestingly that
3-OPT-disjoint performs worse than 2-OPT-sharing and even 2-
OPT-disjoint when k ≤ 8. The reason is that when k is small,
the number of links in the network is also small, and the slow
links in the network probably can not be bypassed. Therefore,
we think it is better to share links with parallel regeneration
trees, and if the distributed storage systems can not afford a
large k, it is better to use only 2 parallel regeneration trees or
even single regeneration tree in the regeneration process.

We also investigate how the asymmetry factor α influences
the regeneration rate. We assign available bandwidth to links
using the measured bandwidth data with asymmetry factor in
(0, αmax), and the maximum asymmetry factor αmax varies
from 0.05 to 1. Fig. 5 shows the curves of regeneration rate
with the increasing of αmax. For each algorithm, the average
regeneration rate is related with the asymmetry factor, because
the average available bandwidth in some intervals of asymmetry
factor is relatively higher. Moreover, with the increasing of
asymmetry factor, it is more probable that the available band-
width is very low in one direction of the link. We thus observe
that for all the algorithms, the regeneration rate changes with
the asymmetry factor intervals in a similar trend and it tends
to be lower with a larger asymmetry factor. In Table I, we
calculate the ratio of the maximum regeneration rate of each
algorithm to its minimum regeneration rate. We notice that the
regeneration rate can be more affected by the asymmetry factor

TABLE I
THE RATIO OF THE MAXIMUM REGENERATION RATE TO THE MINIMUM

REGENERATION RATE OF EACH ALGORITHM IN FIG. 5.

algorithm ratio algorithm ratio
STAR 1.3510 TREE 1.1109

2-OPT-disjoint 1.2128 2-OPT-sharing 1.1877
2-GREEDY-disjoint 1.2249 2-GREEDY-sharing 1.1985

3-OPT-disjoint 1.4550 3-OPT-sharing 1.2854
3-GREEDY-disjoint 1.5046 3-GREEDY-sharing 1.3687

TABLE II
SIMULATION PARAMETERS

Ts starting time (sec.) 2× 106

Tf finish time (sec.) 1.2× 107

Nall the number of nodes 100
Nr repeated times 500
M file size (KB) 5× 108

r redundancy rate 1.5
tmax maximum number of parallel regeneration trees 5

if there are more parallel regeneration trees. However, STAR is
still very sensitive with the asymmetry factor, because it always
“selects” the link with the worst available bandwidth as its
bottleneck edge. We also observe that edge-sharing algorithms
work better than edge-disjoint algorithms, because when the
asymmetry factor is large, the bandwidth left by other parallel
regeneration trees tends to be higher and thus is more likely to
used by edge-sharing algorithms.

B. Dynamic network environment

We have evaluated the performance of the algorithms in a
static environment, i.e., there is no node join/departure in the
network. However, it is improbable in reality. Thus, in this
section, we introduce the node behaviors into our simulation
and compare some metrics important to the practical distributed
storage systems.

The trace file containing the join/departure behaviors of
nodes in PlanetLab is provided by [18]. The status of the node is
detected by the pings repeated every 15 minutes from Jan. 2004
to Jan. 2005. Based the trace file, we run our simulation in an
event-driven simulator which simulates a practical distributed
storage system in PlanetLab. Each node in the simulation is
mapped to a real node in PlanetLab, and the edge in the
simulation is mapped to the corresponding edge connecting the
two corresponding nodes in PlanetLab in the same direction.
We assign the available bandwidth of each edge according to
the available bandwidth of the mapped edge.

Table II shows the parameters we use in the simulation. Time
starts at 0 in the trace file and the simulation runs from Ts to
Tf . We select Nall nodes with the most frequent join/leave
behaviors from the nodes in the trace file. We assume that at
the beginning of the simulation, a file has been stored in the
distributed storage system. The size of the file is M kilobytes.
The file is divided into k blocks and the coded blocks are stored
in r × k storage nodes, where r is the redundancy rate. Each
storage node stores one coded block.

time

A storage
node leaves.

A newcomer is selected and
a regeneration is launched.

One provider leaves.
The regeneration fails.

regeneration time

Another regeneration
is launched.

regeneration time

Another storage
node leaves.

1

2 3

4 5 6

The regeneration
successes.

Fig. 6. Timeline of the regeneration process in the simulation.

We use a timeline in Fig. 6 to describe our simulation system.
After a storage node leaves the network at t1, the system has to
select a replacement node, i.e., a newcomer, to regenerate the
lost coded block. If there is no available replacement node, the
regeneration has to be postponed until a node joins the network
at t2. When a regeneration is launched, k providers are selected
from the available storage nodes with the highest available
bandwidth towards the newcomer. We construct the regener-
ation tree(s) and calculate the corresponding regeneration time.
When a storage node or the newcomer leaves the network at
t3, before the regeneration finishes, the regeneration fails and
the system has to launch another regeneration at t4. When the
regeneration finishes at t5, it is regarded as successful. The
system then keeps idle until another storage node fails at t6.

We compare four algorithms in the simulation. For 1-tree
algorithms, we compare STAR and TREE. For multi-tree
algorithms, we set tmax as the maximum number of parallel
regeneration trees used during the regeneration. When t is too
large, the regeneration rate of t-OPT-disjoint/sharing algorithm
will decrease, as shown in Fig. 4(b). Thus we select the
best t which achieves the maximum regeneration rate when
t = 1, 2, . . . , tmax. When t = 1, the regeneration tree is
constructed by TREE, and t parallel regeneration trees are
constructed by t-OPT-disjoint or t-OPT-sharing algorithm when
t > 2. This algorithm is referred to as BEST-disjoint if the
t-OPT-disjoint algorithm is used and as BEST-sharing if the t-
OPT-sharing algorithm is employed. We repeat the simulation
for Nr times and then get the average results.

Table II also shows the values of parameters used in our
simulation. The simulation covers 107 seconds in PlanetLab.
There are totally 100 nodes in the simulation. On average, there
are 49.92 nodes available and each node joins or leaves the
network 0.27 times per day during this time. We set the size of
the original file to be 500GB, the size of the current mainstream
commodity hard disk. The redundancy rate is set to be 1.5. At
most 5 parallel regeneration trees can be constructed during the
regeneration. In the simulation, k varies from 6 to 20. Thus, it
is probable that there exist 5 edge-disjoint parallel regeneration
trees. The simulation is repeated for 500 times.

Fig. 7 shows the simulation results. In Fig. 7(a), we can
see that TREE can reduce the regeneration time by 58% and
BEST-sharing further reduce the time by 55% compared with
TREE. Because the number of links in the network increases
with k, it is more likely to select the links with higher available
bandwidth when k is larger. Thus the curves all go down
with the increasing of k. Compared with Fig. 4, the curves of
BEST-disjoint and BEST-sharing are quite close together. The
“BEST” algorithms can select the best t to achieve the optimal
regeneration time, so the gap between BEST-disjoint and BEST-
sharing will not be big when k is small. When k becomes larger,
the gap becomes smaller and smaller, as illustrated in Fig. 4.

We also compare another two important performance metrics
of the regeneration in the distributed storage system. One metric
is the probability of successful regeneration. The regeneration
fails when one provider or the newcomer leaves the network

6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

k (#provider)

re
ge

ne
ra

tio
n

tim
e

(s
ec

.)

STAR
TREE
BEST−disjoint
BEST−sharing

(a) regeneration time

6 8 10 12 14 16 18 20
0.7

0.75

0.8

0.85

0.9

0.95

k (#provider)

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

fu
l r

eg
en

er
at

io
n

STAR
TREE
BEST−disjoint
BEST−sharing

(b) probability of successful regeneration

6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

k (#provider)

da
ta

 a
va

ila
bi

lit
y

STAR
TREE
BEST−disjoint
BEST−sharing

(c) data availability

Fig. 7. Simulation results in the dynamic network environment.

during the regeneration. We can see in Fig. 7(b) that both BEST-
disjoint and BEST-sharing have the probability of successful
regeneration more than 90%, while only about 75% of the
regeneration processes using STAR and about 85% of the
regeneration processes using TREE success. Moreover, when k
is large, the probability of the successful regeneration process
begins to reduce, because node departures are more likely to
happen during the regeneration.

We notice in Fig. 7(c), the file availability of STAR is only
about 60%. The file availability is the probability that the file
can be recovered. If too many regeneration processes fail, the
number of coded blocks can not be kept always larger than k.
However, when k > 14, the file availability of BEST-disjoint
and BEST-sharing can be more than 98%. Even for TREE,
the file availability can still be almost 90%. Therefore, we
can regard the file as highly available by the tree-structured
regeneration algorithms.

VI. CONCLUSION

In this paper, we discuss the tree-structured regeneration in
the network with asymmetric links. We show the construction
algorithm of the optimal regeneration tree in the network with
asymmetric links and analyze its performance. We then propose
two algorithms to construct multiple parallel regeneration trees,
so as to further reduce the regeneration time by transmitting
data in parallel during the regeneration. By extensive sim-
ulations, we evaluate the performance of the tree-structured
regeneration algorithms using real data measured in PlanetLab.
Parallel regeneration trees can reduce the regeneration time
significantly and maintain the file availability of no less than
98%.

REFERENCES

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
Recall: System Support for Automated Availability Management,” in
Proc. USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2004, pp. 25–25.

[2] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A High Performance, Server-centric Network Architecture
for Modular Data Centers,” in Proc. ACM SIGCOMM 2009 conference
on Data communication, 2009, pp. 63–74.

[3] J. Li, S. Yang, X. Wang, X. Xue, and B. Li, “Tree-structured Data
Regeneration with Network Coding in Distributed Storage Systems,” in
Proc. 17th IEEE International Workshop on Quality of Service (IWQoS),
2009.

[4] J. Li, S. Yang, X. Wang, and B. Li, “Tree-structured Data Regeneration
in Distributed Storage Systems with Regenerating Codes,” in Proc. IN-
FOCOM, 2010.

[5] Y. Wu, R. Dimakis, and K. Ramchandran, “Deterministic Regenerating
Codes for Distributed Storage,” in Proc. Allerton Conference on Control,
Computing, and Communication, 2007.

[6] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, “Measuring
Bandwidth Between PlanetLab Nodes,” in Proc. Passive and Active
Network Measurement (PAM), 2005, pp. 292–305.

[7] [Online]. Available: http://www.planet-lab.org/
[8] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure Coding

vs. Replication,” 2005.
[9] S. Acedański, S. Deb, M. Médard, and R. Koetter, “How Good is Random

Linear Coding based Distributed Networked Storage?” in Proc. 1st
Workshop on Network Coding (WiOpt), Apr. 2005.

[10] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” in Proc. INFOCOM, May 2007,
pp. 2000–2008.

[11] A. Duminuco and E. Biersack, “Hierarchical Codes: How to Make
Erasure Codes Attractive for Peer-to-Peer Storage Systems,” in Proc. 8th
International Conference on Peer-to-Peer Computing (P2P), Sep. 2008,
pp. 89–98.

[12] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of Wide-
area Internet Bottlenecks,” in Proc. ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2003,
pp. 316–317.

[13] H. N. Gabow and R. E. Tarjan, “Algorithms for Two Bottleneck Opti-
mization Problems,” J. Algorithms, vol. 9, no. 3, pp. 411–417, 1988.

[14] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. Wiley-
Interscience, Aug 2003.

[15] R. E. Tarjan, “A Good Algorithm for Edge-disjoint Branching,” In-
fom. Process. Lett., vol. 3, no. 2, pp. 51–53, 1974.

[16] H. N. Gabow and K. S. Manu, “Packing Algorithms for Arborescences
(and Spanning Trees) in Capacitated Graphs,” in Proc. 4th International
Conference on Integer Programming and Combinatorial Optimization
(IPCO), 1995, pp. 388–402.

[17] S. Banerjee, S.-J. Lee, P. Sharma, and P. Yalagandula. S3 (Scalable
Sensing Service). [Online]. Available: http://networking.hpl.hp.com/s-
cube/PL/

[18] J. Stribling. Planetlab All Pairs Ping. [Online]. Available:
http://infospect.planet-lab.org/pings

[19] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cot, “pathChirp: Ef-
ficient Available Bandwidth Estimation for Network Paths,” in Proc. Pas-
sive and Active Measurement Workshop, 2003.

